Machine Learning Predicts Highest-Risk Groundwater Sites to Improve Water Quality Monitoring

 Matt Shipman  

illustration shows a digital screen displaying data related to groundwater quality

For Immediate Release

Yaroslava Yinglingyara_yingling@ncsu.edu

Paul Westerhoffp.westerhoff@asu.edu

Matt Shipmanmatt_shipman@ncsu.edu

An interdisciplinary team of researchers has developed a machine learning framework that uses limited water quality samples to predict which inorganic pollutants are likely to be present in a groundwater supply. The new tool allows regulators and public health authorities to prioritize specific aquifers for water quality testing.

This proof-of-concept work focused on Arizona and North Carolina but could be applied to fill critical gaps in groundwater quality in any region.

Groundwater is a source of drinking water for millions and often contains pollutants that pose health risks. However, many regions lack complete groundwater quality datasets.

“Monitoring water quality is time-consuming and expensive, and the more pollutants you test for, the more time-consuming and expensive it is,” says Yaroslava Yingling, co-corresponding author of a paper describing the work and Kobe Steel Distinguished Professor of Materials Science and Engineering at North Carolina State University.

“As a result, there is interest in identifying which groundwater supplies should be prioritized for testing, maximizing limited monitoring resources,” Yingling says. “We know that naturally occurring pollutants, such as arsenic or lead, tend to occur in conjunction with other specific elements due to geological and environmental factors. This posed an important data question: with limited water quality data for a groundwater supply, could we predict the presence and concentrations of other pollutants?”

“Along with identifying elements that pose a risk to human health, we also wanted to see if we could predict the presence of other elements – such as phosphorus – which can be beneficial in agricultural contexts but may pose environmental risks in other settings,” says Alexey Gulyuk, a co-first author of the paper and a teaching professor of materials science and engineering at NC State.

To address this challenge, the researchers drew on a huge data set, encompassing more than 140 years of water quality monitoring data for groundwater in the states of North Carolina and Arizona. Altogether, the data set included more than 20 million data points, covering more than 50 water quality parameters.

“We used this data set to ‘train’ a machine learning model to predict which elements would be present based on the available water quality data,” says Akhlak Ul Mahmood, co-first author of this work and a former Ph.D. student at NC State. “In other words, if we only have data on a handful of parameters, the program could still predict which inorganic pollutants were likely to be in the water, as well as how abundant those pollutants are likely to be.”

One key finding of the study is that the model suggests pollutants are exceeding drinking water standards in more groundwater sources than previously documented. While actual data from the field indicated that 75-80% of sampled locations were within safe limits, the machine learning framework predicts that only 15% to 55% of the sites may truly be risk-free.

“As a result, we’ve identified quite a few groundwater sites that should be prioritized for additional testing,” says Minhazul Islam, co-first author of the paper and a Ph.D. student at Arizona State University. “By identifying potential ‘hot spots,’ state agencies and municipalities can strategically allocate resources to high-risk areas, ensuring more targeted sampling and effective water treatment solutions”

“It’s extremely promising and we think it works well,” Gulyuk says. “However, the real test will be when we begin using the model in the real world and seeing if the prediction accuracy holds up.”

Moving forward, researchers plan to enhance the model by expanding its training data across diverse U.S. regions; integrating new data sources, such as environmental data layers, to address emerging contaminants; and conducting real-world testing to ensure robust, targeted groundwater safety measures worldwide.

“We see tremendous potential in this approach,” says Paul Westerhoff, co-corresponding author and Regents’ Professor in the School of Sustainable Engineering and the Built Environment at ASU. “By continuously improving its accuracy and expanding its reach, we’re laying the groundwork for proactive water safety measures across the globe.”

“This model also offers a promising tool for tracking phosphorus levels in groundwater, helping us identify and address potential contamination risks more efficiently,” says Jacob Jones, director of the National Science Foundation-funded Science and Technologies for Phosphorus Sustainability (STEPS) Center at NC State, which helped fund this work. “Looking ahead, extending this model to support broader phosphorus sustainability could have a significant impact, enabling us to manage this critical nutrient across various ecosystems and agricultural systems, ultimately fostering more sustainable practices.”

The paper, “Multiple Data Imputation Methods Advance Risk Analysis and Treatability of Co-occurring Inorganic Chemicals in Groundwater,” is published open access in the journal Environmental Science & Technology. The paper was co-authored by Emily Briese and Mohit Malu, both Ph.D. students at Arizona State; Carmen Velasco, a former postdoctoral researcher at Arizona State; Naushita Sharma, a postdoctoral researcher at Oak Ridge National Laboratory; and Andreas Spanias, a professor of digital signal processing at Arizona State.

This work was supported by the NSF STEPS Center; and by the Metals and Metal Mixtures: Cognitive Aging, Remediation and Exposure Sources (MEMCARE) Superfund Research Center based at Harvard University, which is supported by the National Institute of Environmental Health Science under grant P42ES030990.

-shipman-

Note to Editors: The study abstract follows.

“Multiple Data Imputation Methods Advance Risk Analysis and Treatability of Co-occurring Inorganic Chemicals in Groundwater”

Authors: Akhlak U. Mahmood, Alexey V. Gulyuk and Yaroslava G. Yingling, North Carolina State University; Minhazul Islam, Emily Briese, Carmen A. Velasco, Mohit Malu, Naushita Sharma, Andreas Spanias and Paul Westerhoff, Arizona State University

Published: Nov. 7, Environmental Science & Technology

DOI: 10.1021/acs.est.4c05203

Abstract: Accurately assessing and managing risks associated with inorganic pollutants in groundwater is imperative. Historic water quality databases are often sparse due to rationale or financial budgets for sample collection and analysis, posing challenges in evaluating exposure or water treatment effectiveness. We utilized and compared two advanced multiple data imputation techniques, AMELIA and MICE algorithms, to fill gaps in sparse groundwater quality data sets. AMELIA outperformed MICE in handling missing values, as MICE tended to overestimate certain values, resulting in more outliers. Field data sets revealed that 75% to 80% of samples exhibited no co-occurring regulated pollutants surpassing MCL values, whereas imputed values showed only 15% to 55% of the samples posed no health risks. Imputed data unveiled a significant increase, ranging from 2 to 5 times, in the number of sampling locations predicted to potentially exceed health-based limits and identified samples where 2 to 6 co-occurring chemicals may occur and surpass health-based levels. Linking imputed data to sampling locations can pinpoint potential hotspots of elevated chemical levels and guide optimal resource allocation for additional field sampling and chemical analysis. With this approach, further analysis of complete data sets allows state agencies authorized to conduct groundwater monitoring, often with limited financial resources, to prioritize sampling locations and chemicals to be tested. Given existing data and time constraints, it is crucial to identify the most strategic use of the available resources to address data gaps effectively. This work establishes a framework to enhance the beneficial impact of funding groundwater data collection by reducing uncertainty in prioritizing future sampling locations and chemical analyses.

CLICK HERE FOR MORE INFORMATION

https://news.ncsu.edu/2024/11/predicting-risk-in-groundwater-supplies/?

Harmful microplastics infiltrating drinking water

Wastewater treatment plants are still not effectively removing dangerous microplastics

Date:April 21, 2025

Source:University of Texas at Arlington

Summary:Despite advances in wastewater treatment, tiny plastic particles called microplastics are still slipping through, posing potential health and environmental hazards, according to new research.Share:

    

FULL STORY


Despite advances in wastewater treatment, tiny plastic particles called microplastics are still slipping through, posing potential health and environmental hazards, according to new research from The University of Texas at Arlington.

Because plastic is inexpensive to produce yet lightweight and sturdy, manufacturers have found it ideal for use in nearly every consumer good, from food and beverage packaging to clothing and beauty products. The downside is that when a plastic item reaches the end of its useful life, it never truly disappears. Instead, it breaks down into smaller and smaller pieces called microplastics — particles five millimeters or less, about the width of a pencil eraser — that end up in our soil and water.

“What our systematic literature review found is that while most wastewater treatment facilities significantly reduce microplastics loads, complete removal remains unattainable with current technologies,” said Un-Jung Kim, assistant professor of earth and environmental sciences at UT Arlington and senior author of the study published in Science of the Total Environment.

“As a result, many microplastics are being reintroduced into the environment, likely transporting other residual harmful pollutants in wastewater, such the chemicals Bisphenols, PFAS and antibiotics,” Dr. Kim added. “These microplastics and organic pollutants would exist in trace level, but we can get exposure through simple actions like drinking water, doing laundry or watering plants, leading to potential long-term serious human health impacts such as cardiovascular disease and cancer.”

According to the study, one of the main challenges in detecting and mitigating microplastics is the lack of standardized testing methods. The researchers also call for a unified approach to define what size particle qualifies as a microplastic.

“We found that the effectiveness of treatments varies depending on the technology communities use and how microplastics are measured to calculate the removal rates,” said the study’s lead author, Jenny Kim Nguyen. “One way to better address the growing microplastics issue is to develop standardized testing methods that provide a clearer understanding of the issue.”

Nguyen began this research as an undergraduate student in Kim’s Environmental Chemistry Lab. She is now pursuing a master’s degree in earth and environmental sciences at UTA, where she is working to develop standardized experimental protocols for studying microplastics in air and water.

“This work helps us understand the current microplastics problem, so we can address its long-term health impacts and establish better mitigation efforts,” said Karthikraj Rajendiran, a co-author of the study and assistant professor of research from UTA’s Bone Muscle Research Center within the College of Nursing and Health Innovations.

The team also emphasizes the need for greater public awareness of microplastics to help consumers make more eco-friendly choices.

“While communities must take steps to improve microplastic detection and screening at the wastewater and water quality monitoring, consumers can already make a difference by choosing to buy clothing and textiles with less plastics whenever feasible, knowing that microfibers are the most common microplastic continually released through wastewater,” Kim added.

Funding for the project was provided by UTA’s Research Enhancement Program, which supports multidisciplinary researchers in launching new projects.

CLICK HERE FOR MORE INFORMATION

https://www.sciencedaily.com/releases/2025/04/250421162936.htm?

Twenty-year study shows cleaner water slashes cancer and heart disease deaths

Date:November 27, 2025

Source:Columbia University’s Mailman School of Public Health

Summary:A 20-year project in Bangladesh reveals that lowering arsenic levels in drinking water can slash death rates from major chronic diseases. Participants who switched to safer wells had the same risk levels as people who were never heavily exposed. The researchers tracked individual water exposure with detailed urine testing. Their results show how quickly health improves once contaminated water is replaced.Share:

    

FULL STORY


Safer Wells Save Lives in Bangladesh
Cleaner water dramatically reduces chronic disease deaths, even for those exposed to arsenic for years. Credit: Shutterstock

A large 20-year investigation following nearly 11,000 adults in Bangladesh found that reducing arsenic in drinking water was tied to as much as a 50 percent drop in deaths from heart disease, cancer and several other chronic illnesses. The research offers the strongest long-term evidence so far that lowering arsenic exposure can reduce mortality, even for people who lived with contaminated water for many years. These results appear in JAMA.

Scientists from Columbia University, the Columbia Mailman School of Public Health and New York University led the analysis, which addresses a widespread health concern. Naturally occurring arsenic in groundwater remains a significant challenge across the world. In the United States, more than 100 million people depend on groundwater that can contain arsenic, particularly those using private wells. Arsenic continues to be one of the most common chemical contaminants in drinking water.

“We show what happens when people who are chronically exposed to arsenic are no longer exposed,” said co-lead author Lex van Geen of the Lamont-Doherty Earth Observatory, part of the Columbia Climate School. “You’re not just preventing deaths from future exposure, but also from past exposure.”

Two Decades of Data Strengthen the Evidence

Co-lead author Fen Wu of NYU Grossman School of Medicine said the findings offer the clearest proof yet of the connection between lowering arsenic exposure and reduced mortality risk. Over the course of two decades, the researchers closely tracked participants’ health and repeatedly measured arsenic through urine samples, which strengthened the precision of their analysis.

“Seeing that our work helped sharply reduce deaths from cancer and heart disease, I realized the impact reaches far beyond our study to millions in Bangladesh and beyond now drinking water low in arsenic,” said Joseph Graziano, Professor Emeritus at Columbia Mailman School of Public Health and principal investigator of the NIH-funded program. “A 1998 New York Times story first brought us to Bangladesh. More than two decades later, this finding is deeply rewarding. Public health is often the ultimate delayed gratification.”

Clear Drop in Risk When Arsenic Exposure Falls

People whose urinary arsenic levels fell from high to low had mortality rates that matched those who had consistently low exposure for the entire study. The size of the drop in arsenic was closely tied to how much mortality risk declined. Those who continued drinking high-arsenic water did not show any reduction in chronic disease deaths.

Arsenic naturally accumulates in groundwater and has no taste or smell, meaning people can drink contaminated water for years without knowing it. In Bangladesh, an estimated 50 million people have consumed water exceeding the World Health Organization’s guideline of 10 micrograms per liter. The WHO has described this as the largest mass poisoning in history.

From 2000 to 2022, the Health Effects of Arsenic Longitudinal Study (HEALS) monitored thousands of adults in Araihazar, Bangladesh. The project tested more than 10,000 wells in a region where many families rely on shallow tube wells with arsenic levels ranging from extremely low to dangerously high.

Researchers periodically measured arsenic in participants’ urine, a direct marker of internal exposure, and recorded causes of death. These detailed data allowed the team to compare long-term health outcomes for people who reduced their exposure with those who remained highly exposed.

Community Efforts Created a Natural Comparison Group

Throughout the study period, national and local programs labeled wells as safe or unsafe based on arsenic levels. Many households switched to safer wells or installed new ones, while others continued using contaminated water. This created a natural contrast that helped researchers understand the effects of reducing exposure.

Arsenic exposure decreased substantially in Araihazar during the study. The concentration in commonly used wells fell by about 70 percent as many families sought cleaner water sources. Urine tests confirmed a corresponding decline in internal exposure, averaging a 50 percent reduction that persisted through 2022.

Reduced Exposure Brings Lasting Health Benefits

These trends held true even after researchers accounted for differences in age, smoking and socioeconomic factors. Participants who remained highly exposed, or whose exposure rose over time, continued to face significantly higher risks of death from chronic diseases.

The researchers compared the health benefits of lowering arsenic to quitting smoking. The risks do not disappear immediately but drop gradually as exposure decreases.

In Bangladesh, well testing, labeling unsafe sources, drilling private wells and installing deeper government wells have already improved water safety for many communities.

“Our findings can now help persuade policymakers in Bangladesh and other countries to take emergency action in arsenic ‘hot spots’,” said co-author Kazi Matin Ahmed of the University of Dhaka.

To reach more households, the research team is collaborating with the Bangladeshi government to make well data easier to access. They are piloting NOLKUP (“tubewell” in Bangla), a free mobile app created from more than six million well tests. Users can look up individual wells, review arsenic levels and depths, and locate nearby safer options. The tool also helps officials identify communities that need new or deeper wells.

Clean Water Investments Can Save Lives

The study shows that health risks can fall even for people who were exposed to arsenic for years. This highlights an important opportunity: investing in clean water solutions can save lives within a single generation.

“Sustainable funding to support the collection, storage and maintenance of precious samples and data over more than 20 years have made this critically important work possible,” said Ana Navas-Acien, MD, PhD, Professor and Chair of Environmental Health Sciences at Columbia Mailman School of Public Health. “Science is difficult and there were challenges and setbacks along the way, but we were able to maintain the integrity of the samples and the data even when funding was interrupted, which has allowed us to reveal that preventing arsenic exposure can prevent disease.”

The study team included researchers from Columbia University’s Mailman School of Public Health, the New York University Grossman School of Medicine, Lamont-Doherty Earth Observatory, Boston University School of Public Health, the Department of Geology at the University of Dhaka and the Institute for Population and Precision Health at the University of Chicago.

The HEALS project was launched by Columbia University through the National Institute of Environmental Health Sciences’ Superfund Research Program, with most U.S. collaborators based at Columbia when the study began.

CLICK HERE FOR MORE INFORMATION

https://www.sciencedaily.com/releases/2025/11/251127010327.htm?

ASM and AGU Offer Critical Strategies to Protect Public Health and Safe Drinking Water Amid Climate Change

June 9, 2025

Washington, D.C.—The American Academy of Microbiology, the honorific leadership group and think tank within the American Society for Microbiology (ASM), and the American Geophysical Union (AGU) have released a new report, Water, Waterborne Pathogens and Public Health: Environmental Drivers. Developed by leading scientists and informed by expert deliberations from a December 2024 colloquium organized by ASM and AGU, with support from the Association for the Sciences of Limnology and Oceanography (ASLO), the report presents a holistic strategy to reduce waterborne infections and safeguard public health as climate change increasingly disrupts water systems worldwide. 

“Water is a critical determinant of both ecosystem integrity and human health, yet it is increasingly compromised by anthropogenic pressures and broader environmental change,” said Dr. Rita Colwell, Co-Chair of the Colloquium Steering Committee, former ASM President and past Chair of the Academy. “Addressing this public health risk requires coordinated, cross-disciplinary strategies for effective microbial and environmental surveillance, early-warning systems and support for resilient water infrastructure that can withstand intensifying climate stressors.” 

Each year, more than 3.5 million people die from waterborne illnesses, with the heaviest burden falling on low- and middle-income countries, where over 4 billion people rely on water sources that are often unmonitored and unsafe. While many microbes that exist in water are harmless, some can cause serious disease when humans drink or interact with contaminated water. Environmental changes through more frequent and intense floods, hurricanes and heatwaves, coupled with aging infrastructure, are increasing human exposure to waterborne pathogens and threatening access to safe drinking water. 

The report is part of the Academy’s Climate Change & Microbes Scientific Portfolio, a 5-year initiative to advance microbial science to inform climate policy, foster innovation and support development of microbial technologies that can be applied globally. Supported by a grant from the Burroughs Wellcome Fund (BWF), the report shares expert-driven insights and highlights key strategies to strengthen prevention and response to waterborne disease outbreaks, including:   

  • Enhance surveillance and monitoring: Implement robust systems to track water quality and pathogen presence. 
  • Modernize water infrastructure: Invest in advanced water treatment and distribution systems to ensure safe drinking water. 
  • Promote interdisciplinary research: Initiate collaboration across microbial sciences, hydrology and climate science to address health relevant challenges. 
  • Improve public awareness and engagement: Raise awareness of the importance of safe water and sanitation and engage local communities to develop collaborative solutions. 

“Microbial datasets and environmental monitoring are foundational to explaining the dynamic interdependencies between ecological processes and human health outcomes,” said Antarpreet Jutla, Ph.D., Co-Chair of the Colloquium Steering Committee, AGU member and recipient of AGU’s 2023 Charles S. Falkenberg Award. “Integrating these data streams within interdisciplinary, systems-based frameworks facilitates the design of adaptive infrastructure and predictive modeling platforms, ultimately strengthening public health resilience and promoting socio-economic stability in the context of accelerating environmental change.” 

While a wealth of environmental and weather data, public health information and waterborne pathogen monitoring exists, resources for this information are often siloed. The report emphasizes integrating data systems with technologies like artificial intelligence and machine learning to develop predictive models for communities that allow proactive warning of waterborne disease outbreaks. 

Investment in water infrastructure that addresses region-specific geographical and environmental conditions and meets the needs of local communities is critical. The report highlights the promise of microbes as a nature-based solution that improves water treatment, prevents infrastructure degradation and provides new ways to build systems that hold up against changing weather parameters. 

Ultimately, addressing these challenges will require cross-disciplinary collaboration. The report calls for active engagement with local communities, especially those most affected by water insecurity, to co-develop effective and long-lasting solutions.  

“Safeguarding global health demands an integrated perspective and coordinated action,” said Jay Lennon, Ph.D., Chair of the Academy Climate Change Task Force. “Around the globe, scientists, public health advocates, policymakers, local leaders and philanthropists must work hand in hand to build a future where every person has access to safe and reliable water.” 

###
The American Society for Microbiology is one of the largest professional societies dedicated to the life sciences and is composed of over 32,000 scientists and health practitioners. ASM’s mission is to promote and advance the microbial sciences. 
 
ASM advances the microbial sciences through conferences, publications, certifications, educational opportunities and advocacy efforts. It enhances laboratory capacity around the globe through training and resources. It provides a network for scientists in academia, industry and clinical settings. Additionally, ASM promotes a deeper understanding of the microbial sciences to all audiences. 

###
The American Geophysical Union is an international association of more than 60,000 advocates and experts in Earth and space science. Fundamental to our mission since our founding in 1919 is to live our values, which we do through our net zero energy building in Washington, D.C., and by making scientific discoveries and research accessible and engaging to all to help protect society and prepare global citizens for the challenges and opportunities ahead.

###
The Association for the Sciences of Limnology and Oceanography (ASLO) is an international aquatic science society that was founded in 1948. For more than 70 years, it has been the leading professional organization for researchers and educators in the field of aquatic science. The purpose of ASLO is to foster a diverse, international scientific community that creates, integrates and communicates knowledge across the full spectrum of aquatic sciences, advances public awareness and education about aquatic resources and research and promotes scientific stewardship of aquatic resources for the public interest. Its products and activities are directed toward these ends. With 3,000 members in more than 70 countries worldwide, the society has earned an outstanding reputation and is best known for its journals and interdisciplinary meetings. For more information about ASLO, please visit our website

CLICK HERE FOR MORE INFORMATION

https://asm.org/press-releases/2025/june/asm-and-agu-offer-critical-strategies-to-protect-p?

Villagers drank sinkhole water as a ‘miracle cure’, until officials found dangerous bacteria

TOI World Desk / TIMESOFINDIA.COM / Jan 19, 2026, 04:24 IST

Villagers drank sinkhole water as a 'miracle cure', until officials found dangerous bacteria

Residents in West Sumatra, Indonesia have been urged to stop collecting and drinking water from a newly formed sinkhole after authorities found it was contaminated with E. coli, a bacteria linked to serious gastrointestinal illness.The incident unfolded in Limapuluh Kota Regency, where a large ground collapse drew crowds of locals who believed the water pooling inside the sinkhole had medicinal properties. Videos and posts showing people lining up with bottles quickly spread online, turning the site into an unlikely “healing water” destination.That belief, officials say, is not just unproven. It could be dangerous.

Authorities warn water is unsafe

West Sumatra’s Deputy Governor Vasko Ruseimy publicly cautioned residents not to consume the water after tests showed it contained Escherichia coli (E. coli). Reports citing early findings from the Geological Agency and local health checks said the water did not meet safe drinking standards, and officials warned against using it for “health” or “treatment” claims.E. coli contamination is often considered a red-flag indicator because it can suggest the presence of harmful pathogens introduced through surface runoff, soil contamination, or waste intrusion.

Where the sinkhole appeared

The sinkhole reportedly opened in a rice field area in Jorong Tepi, Nagari Situjuah Batua, part of Limapuluh Kota Regency. Indonesian authorities and geology experts began assessing the site soon after it was reported, as concern grew about whether the collapse could expand.A geology expert from Universitas Gadjah Mada (UGM) said the phenomenon was shaped by local geological conditions and was likely triggered by heavy rainfall, linking it to wider hydrometeorological impacts felt across parts of Sumatra.

Why sinkholes happen in the first place

Sinkholes form when the ground surface collapses into an underground gap. In many cases, that gap grows silently over time, then fails suddenly.Experts say several factors can cause this:1) Hidden erosion beneath the surfaceWater moving underground can gradually carry away soil particles in a process sometimes described as “piping erosion”, eventually creating a hollow space large enough for the ground above to give way.2) Intense rainfall and flooding pressureHeavy rain can destabilise soil layers, accelerate erosion, and raise groundwater pressure. Even if the ground has been weakening for months or years, extreme rainfall can be the final trigger.3) Landscape vulnerabilitySome areas are naturally more prone to collapses depending on soil composition, underground drainage patterns, and whether the land has been altered by farming, construction, or shifting water channels.In practical terms, sinkholes are not just dramatic “holes in the ground”. They are often a sign that the underground structure has changed, and that nearby land may still be unstable.

Why drinking sinkhole water can be risky even if it looks clear

One reason the West Sumatra case drew alarm is how quickly “clean-looking” water was assumed to be safe.But sinkholes can act like natural funnels, pulling in contaminants from surrounding areas, including:

  • animal waste from nearby fields
  • bacteria from soil and surface runoff
  • agricultural contamination
  • drainage seepage

Even if the water appears clear, it may still carry harmful organisms. That’s why officials moved quickly to warn residents once E. coli was detected.

A public health warning wrapped inside a viral moment

The sinkhole water episode has become a reminder of how fast health misinformation can spread when fear, curiosity, and hope collide. For some residents, the attraction was not spectacle but belief: that unusual natural phenomena can offer cures.Authorities, however, have taken a firm line. Their message is simple: do not drink it.As officials monitor the site for further ground movement, the bigger risk may no longer be the sinkhole itself, but what happens when viral belief outruns basic water safety.

CLICK HERE FOR MORE INFORMATION

https://timesofindia.indiatimes.com/world/rest-of-world/villagers-drank-sinkhole-water-as-a-miracle-cure-until-officials-found-dangerous-bacteria/articleshow/126663770.cms?

Scientists Say This Simple Underground Fix Could Keep PFAS Out of Drinking Water

In real-world testing, researchers found that a carbon-based material placed underground sharply lowered PFAS in groundwater and required minimal maintenance.

By Stacey Leasca

Published on January 16, 2026

How to Make Spanakopita-Inspired Potato Crust QuicheClose

Person pouring water from a glass bottle into a glass indoor background
Credit: Viktoriya Skorikova / Getty Images
  • Scientists from Brown University, the University of Minnesota, and the U.S. Navy found that injecting colloidal carbon into contaminated soil can trap PFAS chemicals underground, dramatically reducing contamination.
  • In field tests, PFAS concentrations fell from over 50,000 nanograms per liter to undetectable levels within 10 months, capturing both long- and short-chain PFAS compounds.
  • The approach could cost less than half as much as current cleanup methods and require minimal maintenance, offering a sustainable solution for communities dealing with PFAS pollution.

Over decades, per- and polyfluoroalkyl substances (PFAS) have slowly woven their way into our daily lives, without most of us ever noticing. They’re the stuff that prevents your eggs from sticking to the frying pan, waterproofs your jackets, allows makeup to last an entire day, and keeps those fast-food wrappers grease-resistant.

They’re also the stuff that earned the unsettling nickname “forever chemicals” thanks to carbon-fluorine bonds so strong that once these chemicals enter the environment, they tend to stay there. Forever. And that durability has become a serious problem. Scientists are increasingly recognizing that PFAS may cause a range of health issues, even as these chemicals have been detected in groundwater near military bases, airports, industrial sites, and municipal water systems across the United States. Cleaning them up has proven frustratingly difficult, expensive, and often temporary. Public-facing advice has often focused on avoiding products that contain PFAS or relying on above-ground water filtration, which requires almost constant upkeep. But now a few savvy researchers say they may soon have a solution for that, too.

​Researchers from Brown University and the University of Minnesota, alongside industry partners and the U.S. Navy, tested whether an ultrafine carbon material could be injected directly into contaminated soil to trap PFAS in place. Their findings, published in The Journal of Hazardous Materials, show that it may be a wild enough idea to work.

The team tested an activated carbon material known as “colloidal carbon,” which acts like a microscopic sponge that can trap PFAS chemicals underground. They began by trialing it in lab conditions, collecting soil from a contaminated site, before testing it on the real thing, taking it to a field at a Navy training area known to have extremely high PFAS levels.

https://www.foodandwine.com/embed?url=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DP-x-FXvsjTw&id=mntl-sc-block_10-0-iframe&options=e30%3D&docId=11883002

​The researchers ran a “push-pull” test, injecting the carbon into the ground, creating an underground treatment zone where PFAS bind as groundwater flows through the net, then pumping the water back out to measure how much of the PFAS made it through. In their tests, the PFAS concentrations dropped from more than 50,000 nanograms per liter to tktk, below detection limits, within 10 months. Importantly, the carbon net captures both long-chain and short-chain PFAS. This is a big deal for the potential cleanup of these forever chemicals because short-chain PFAS are harder to remove, yet are becoming increasingly common as manufacturers move away from older compounds.

​Just as important from an economic standpoint is that, according to the team’s analysis, the long-term operating costs of this carbon-based approach would be less than half those of the existing PFAS remedies. And because the system would exist underground, it would require little maintenance.

Your Beer May Contain ‘Forever Chemicals,’ According to New Research

“This study shows that we can create an effective treatment zone underground that dramatically reduces PFAS levels with far lower long-term costs,” Matt Simcik, a professor in the School of Public Health and co-author of the study, shared in a statement. “The effectiveness of this method, combined with the fact that the system requires very little ongoing maintenance, makes this a promising option for real-world cleanup efforts. For communities facing PFAS contamination, this represents a major step forward toward practical, sustainable technologies that can protect drinking water and reduce long-term exposure risks.”

​It’s critical to note that this isn’t a silver bullet — at least not yet. The researchers are clear that more work is needed to understand how long underground carbon remains effective and how it could perform under different soil conditions. But the study does offer some good news and a potentially practical path forward in the fight against forever chemicals. And, on a similarly impactful note, it shows just how important it is that we work on this issue together.

​”The project shows the importance of partnerships between practitioners, government, and academia,” William Arnold, a professor in the College of Science and Engineering, said. “The expertise, experience, and insight of the individuals who made up the team were needed for this lab-to-field project to succeed.”

CLICK HERE FOR MORE INFORMATION

https://www.foodandwine.com/carbon-based-filter-removes-pfas-in-contaminated-groundwater-11883002?

Over 38,000 Gallons of Water Have Been Recalled Due to ‘Foreign Black Substance’ Contamination

The gallon jugs were shipped to store locations in six states nationwide

By Moná Thomas 

Published on January 15, 2026 11:55AM EST

Leave a Comment

water bottles on an automated conveyor belt, Bottled water production line
water bottles on an automated conveyor belt, Bottled water production line.Credit : cofotoisme/Getty

NEED TO KNOW

  • 38,043 gallons of Meijer Steam Distilled Water have been recalled
  • The enforcement reports cite “floating black foreign substance” contamination for the recall
  • The company has yet to issue a statement confirming the nature of the foreign substance

More than 38,000 gallons of bottled water have been recalled after an Enforcement Report from the U.S. Food and Drug Administration (FDA) revealed a “floating black foreign substance” appearing inside gallon-sized jugs.

According to a notice published by the FDA, the recall involves Meijer Steam Distilled Water, which is sold in one-gallon plastic containers with red caps. Meijer voluntarily initiated the recall in November 2025, and it remains ongoing as officials continue to review the issue. In total, 38,043 gallons of the product are affected.

Meijer Distilled Water, Recall
Meijer Distilled Water, Recall.Meijer 

The affected jugs can be identified by a best-by date of Oct. 4, 2026, along with lot code 39-222 #3 and a UPC code of 041250841197. Meijer item codes tied to the recall include Product ID 472859 and Item Code 477910.

The recalled water was distributed to Meijer stores across Illinois, Indiana, Kentucky, Michigan, Ohio and Wisconsin. Consumers who purchased distilled water in those states are urged to check their containers carefully.

Our new app is here! Free, fun and full of exclusives. Scan to download now!

According to the FDA notice, the issue stems from the presence of a black substance floating inside the water, though the exact source and composition of the material have not been publicly identified. The agency has not yet assigned a recall classification, which typically indicates how serious a potential health risk may be.

Meijer did not initially respond to PEOPLE’s request for comment.

Distilled water is often used for more than just drinking. Many consumers rely on it for medical devices, such as CPAP machines, according to Verywell Health, as well as for infant formula preparation and sinus rinses, where water purity is especially important. Because of that, officials say consumers should stop using the recalled water immediately, even if no health issues are apparent.

At this time, no illnesses or injuries have been reported in connection with the recalled product. Still, the FDA advises anyone who has the affected water to either dispose of it safely or return it to a Meijer store for a refund or replacement.

The FDA continues to monitor the recall and has not provided additional details about how the contamination occurred. Consumers are encouraged to review any distilled water they have on hand and follow recall guidance to avoid potential exposure.

CLICK HERE FOR MORE INFORMATION

https://people.com/over-38-000-gallons-of-water-have-been-recalled-due-to-foreign-black-substance-contamination-11885997?

Health Impacts of Drought

What to know

Drought can impact our health in many ways. Some health effects are short-term and can be directly observed and measured. Drought can also cause long-term public health issues.

Drought health impacts

Water

Reduced stream and river flows can increase the concentration of pollutants in water and cause stagnation. Higher water temperatures in lakes and reservoirs lead to reduced oxygen levels. These levels can affect fish and other aquatic life and water quality.

Runoff from drought-related wildfires can carry extra sediment, ash, charcoal, and woody debris to surface waters, killing fish and other aquatic life by decreasing oxygen levels in the water. Many parts of the United States depend on groundwater as a primary source of water. Over time, reduced precipitation and increased surface water evaporation mean groundwater supplies are not replenished at a typical rate.

Food and Nutrition

Drought can limit the growing season and create conditions that encourage insect and disease infestation in certain crops. Low crop yields can result in rising food prices and shortages, potentially leading to malnutrition.

Drought can also affect the health of livestock raised for food. During drought, livestock can become malnourished, diseased, and die.

Air Quality

The dusty, dry conditions and wildfires that often accompany drought can harm health. Fire and dry soil and vegetation increase the number of particulates that are suspended in the air, such as pollen, smoke, and fluorocarbons. These substances can irritate the bronchial passages and lungs, making chronic respiratory illnesses like asthma worse. This can also increase the risk for acute respiratory infections like bronchitis and bacterial pneumonia.

Other drought-related factors affect air quality, including the presence of airborne toxins originating from freshwater blooms of cyanobacteria. These toxins can become airborne and have been associated with lung irritation, which can lead to adverse health effects in certain populations.

Learn more about air quality and health

Sanitation and Hygiene

Having water available for cleaning, sanitation, and hygiene reduces or controls many diseases. Drought conditions create the need to conserve water, but these conservation efforts should not get in the way of proper sanitation and hygiene.

Personal hygiene, cleaning, hand washing, and washing of fruits and vegetables can be done in a way that conserves water and also reduces health risks. Installing low-flow faucet aerators in businesses and homes is one example of how to reduce water consumption while maintaining hand washing and other healthy hygienic behaviors.

Learn more about hand washing

Recreational Risks

People who engage in water-related recreational activities during drought may be at increased risk for waterborne disease caused by bacteria, protozoa, and other contaminants such as chemicals and heavy metals. Exposure can occur through accidentally or intentionally swallowing water, direct contact of contaminants with mucous membranes, or breathing in contaminants.

Untreated surface water can be a health threat in drought conditions. In untreated surface waters, some pathogens, such as a type of amoeba (Naegleria fowleri), are more common during drought because low water levels may create warmer water temperatures that encourage their growth.

As the levels of surface waters used for boating, swimming, and fishing drop, the likelihood of injury increases. Low water levels in lakes can put people at risk for life-threatening injuries resulting from diving into shallow waters or striking objects that may not be immediately visible while boating. Low surface water levels can also expose potentially dangerous debris from the bottom of lakes, rivers, and ponds.

Learn more about healthy swimming and recreational water

Learn more about Naegleria fowleri

Infectious Disease

Increases in infectious disease can be a direct consequence of drought.

Viruses, protozoa, and bacteria can pollute both groundwater and surface water when rainfall decreases. People who get their drinking water from private wells may be at higher risk for drought-related infectious disease. Other groups also at increased risk include those who have underlying chronic conditions.

Acute respiratory and gastrointestinal illnesses are more easily spread from person to person when hand washing is compromised by a perceived or real lack of available water. During water shortages, the risk for infectious disease increases when hygiene is not maintained.

E. coli and Salmonella are examples of bacteria that can more readily contaminate food and cause infectious disease during drought. Food can serve as a vehicle for disease transmission during a drought because water shortages can cause farmers to use recycled water to irrigate their fields and process the food they grow. When used to grow crops, improperly treated water can cause a host of infectious diseases (such as those caused by toxin-producing E. coli and Salmonella), which can be life-threatening for people in high-risk groups. In addition, the likelihood of surface runoff, which can occur when rain fails to penetrate the dry and compacted soil that often accompanies drought, can cause the inadvertent contamination of crops.

Other infectious disease threats arise when drought leads to the contamination of surface waters and other types of water that are used for recreational purposes. When temperatures rise and rainfall declines, people are more likely to participate in water-related recreation. Persons exposed to contaminated recreational waters are more likely to become infected with pathogens that thrive in the shallow warm waters that exist during drought conditions.

Chronic Disease

Conditions associated with drought may negatively impact people who have certain chronic health conditions such as asthma and some immune disorders.

Drought-related changes in air quality, such as increased concentrations of air particulates and airborne toxins resulting from freshwater algal blooms, can irritate the eyes, lungs, and respiratory systems of persons with chronic respiratory conditions.

Changes in water quality, such as increased concentrations of contaminants, can threaten persons whose immune systems are compromised.

Diseases Transmitted by Insects and Animals

In periods of limited rainfall, both human and animal behavior can change in ways that increase the likelihood of other vectorborne diseases. For instance, during dry periods, wild animals are more likely to seek water in areas where humans live. These behaviors increase the likelihood of human contact with wildlife, the insects they host, and the diseases they carry.

Drought reduces the size of water bodies and causes them to become stagnant. This provides additional breeding grounds for certain types of mosquitoes (for example, Culex pipiens). Outbreaks of West Nile virus, which is transmitted to humans via mosquitoes, have occurred under such conditions. Inadequate water supply can cause people to collect rainwater. This can lead to collections of stagnant water that can become manmade mosquito breeding areas.

CLICK HERE FOR MORE INFORMATION

https://www.cdc.gov/drought-health/health-implications/index.html

Health and water quality

Introduction

Water quality has been closely related to human health 1 ever since John Snow linked a cholera outbreak in London to contaminated water in 1855.2 Vibrio cholerae in water still plays a big role in the annual 1.4-4.3 million cholera cases that continue to occur globally. 3 The SARS-CoV-2 virus, which caused the COVID-19 pandemic, also enters the water cycle, as some COVID-19 patients shed the virus with their stool. 4 Although SARS-CoV-2 has been detected in wastewater, and in surface water receiving untreated wastewater, 5 so far there has been no evidence for presence of viable or infectious virus particles in wastewater, or for water as a transmission source. 6 Instead, the European Union launched a study, coordinated by its Joint Research Council and linked to the World Water Quality Alliance, to explore the potential of wastewater-based virus remnants as a sentinel monitoring concept.

But pathogens are not the only problem. Water is contaminated in a number of other ways that can threaten human health. The toxic compound arsenic is widely present in groundwater and can lead to skin, vascular and nervous system disorders, and cancer. 7 Recent estimates show that 94-220 million people are exposed to high arsenic concentrations in groundwater. 8 Similarly, fluoride, nitrate, heavy metals, and salinity in (ground)water pose human health risks.

Biotoxins formed by some cyanobacteria are a particular nuisance because bloom-forming species accumulate at the water surface, requiring closure of bathing sites and drinking water intakes. 9 As well, a large number of organic micropollutants coming from manufacturing and agriculture pose a health risk to the population. 10 These organic micropollutants can have a variety of impacts, such as disruption of endocrine, reproductive and immune systems. They can also cause cancer and diabetes as well as thyroid and behavioural problems . 11 

More recently recognized contaminants influencing human health include antimicrobial resistant microorganisms (AMR), microplastics 12 or nanomaterials. AMR are a concern worldwide 13 because infections from them are often difficult to treat. Although the role of water in the spread of AMR is not yet quantified, its importance has been recognized. 14 

The potential health risks from microplastics seem obvious, but knowledge of the extent to which they affect human health is limited. 15 And, though recent focus has largely been on the marine realm, UNEP will soon publish guidance on monitoring and addressing plastics in freshwater. 16 

Water quality is related to human health through exposure. People are exposed to water in many different ways, depending on their location, livelihood, culture, wealth, gender etc. The most common exposure ways can be summarized as drinking, bathing, ingestion during domestic use, eating irrigated vegetables, rice (or rice products) or aquatic plants (such as water spinach), eating contaminated fish and shellfish, and skin contact. These exposure pathways highlight that the quality of ground, surface and coastal waters is relevant to human health.

In an earlier assessment, Snapshot of the World’s Water Quality17 faecal coliforms were the contaminant included to represent human-health impacts. The assessment concluded that the rural population at risk of health problems, which is defined as those in contact with water contaminated with high concentrations of faecal coliforms, could be up to hundreds of millions of people in Latin America, Africa and Asia. 18 While this was an important realization, faecal coliform concentrations do not usually correlate very well with pathogen concentrations, as they can grow in the water body, 19 and many more contaminants can have human-health impacts. Therefore, this current assessment incorporates more water quality variables and exposure routes to assess the impact of water quality on human health.

Results

To evaluate the direct and indirect impacts of water quality on human health, we developed a non-exhaustive overview (see Table 3.1). This showed that there are a large number of direct and indirect links between water quality and human health, as well as interrelations between water quality variables, their sources, state, impacts and response. For example, pathogens and nitrate have to some extent the same sources and, therefore, potentially similar response options. But quantitative evidence for the links between water quality and human health are still largely lacking at continental or larger scales.

The global freshwater quality database GEMStat has data for a number of contaminants, but these data vary in space and time. For example, faecal coliform data are available for 6,451 stations across the world, while Escherichia coli data are available from 3,790 stations in North America, South America, Japan, and New Zealand. Data for Salmonella are available for 62 stations along rivers in Europe, but only for a few years in the early 1990s. For arsenic, many heavy metals, nutrients and organic micropollutants some data are available in GEMStat. Here we do not evaluate these data, because they are scattered and recent data for health are scarce. Instead, we report on potential data analyses that have been performed.

Table 3.1 The influence of water quality on human health. This list is non-exhaustive, as no detailed literature has been performed. The colour coding is blue for GEMStat or other large-scale databases; red for remote sensing; yellow for modelling; and green for a combination of GEMStat and modelling. Dark colours are for surface water, light colours for groundwater. 

CLICK HERE FOR MORE INFORMATION

https://www.unep.org/interactives/wwqa/technical-highlights/health-and-water-quality

Drinking water source and exposure to regulated water contaminants in the California Teachers Study cohort

Journal of Exposure Science & Environmental Epidemiology volume 35, pages454–465 (2025)Cite this article

  • 4058 Accesses
  • 6 Citations
  • Metrics

Abstract
Background
Pollutants including metals/metalloids, nitrate, disinfection byproducts, and volatile organic compounds contaminate federally regulated community water systems (CWS) and unregulated domestic wells across the United States. Exposures and associated health effects, particularly at levels below regulatory limits, are understudied.

Objective
We described drinking water sources and exposures for the California Teachers Study (CTS), a prospective cohort of female California teachers and administrators.

Methods
Participants’ geocoded addresses at enrollment (1995–1996) were linked to CWS service area boundaries and monitoring data (N = 115,206, 92%); we computed average (1990–2015) concentrations of arsenic, uranium, nitrate, gross alpha (GA), five haloacetic acids (HAA5), total trihalomethanes (TTHM), trichloroethylene (TCE), and tetrachloroethylene (PCE). We used generalized linear regression to estimate geometric mean ratios of CWS exposures across demographic subgroups and neighborhood characteristics. Self-reported drinking water source and consumption at follow-up (2017–2019) were also described.

Results
Medians (interquartile ranges) of average concentrations of all contaminants were below regulatory limits: arsenic: 1.03 (0.54,1.71) µg/L, uranium: 3.48 (1.01,6.18) µg/L, GA: 2.21 (1.32,3.67) pCi/L, nitrate: 0.54 (0.20,1.97) mg/L, HAA5: 8.67 (2.98,14.70) µg/L, and TTHM: 12.86 (4.58,21.95) µg/L. Among those who lived within a CWS boundary and self-reported drinking water information (2017–2019), approximately 74% self-reported their water source as municipal, 15% bottled, 2% private well, 4% other, and 5% did not know/missing. Spatially linked water source was largely consistent with self-reported source at follow-up (2017–2019). Relative to non-Hispanic white participants, average arsenic, uranium, GA, and nitrate concentrations were higher for Black, Hispanic and Native American participants. Relative to participants living in census block groups in the lowest socioeconomic status (SES) quartile, participants in higher SES quartiles had lower arsenic/uranium/GA/nitrate, and higher HAA5/TTHM. Non-metropolitan participants had higher arsenic/uranium/nitrate, and metropolitan participants had higher HAA5/TTHM.

Impact
Though average water contaminant levels were mostly below regulatory limits in this large cohort of California women, we observed heterogeneity in exposures across sociodemographic subgroups and neighborhood characteristics. These data will be used to support future assessments of drinking water exposures and disease risk.

Similar content being viewed by others

Insights to estimate exposure to regulated and non-regulated disinfection by-products in drinking water
Article Open access
29 June 2022

US drinking water quality: exposure risk profiles for seven legacy and emerging contaminants
Article Open access
22 September 2023

Human health implications of metal pollution in the Betwa-Yamuna river system, India: evidence from Monte Carlo risk modelling
Article Open access
11 January 2026
Introduction
Drinking water represents an important source of exposure to inorganics (e.g., arsenic and nitrate), radionuclides (uranium, alpha particles), disinfection byproducts (DBPs), and volatile organic compounds (VOCs) for populations in the United States (U.S.) and worldwide [1]. Approximately 90% of the U.S. population is served by public water systems, and 10% by private wells [2]. In California, approximately 95% of the population is served by public water systems [3]. Public water systems include at least 15 service connections or serve at least 25 people; community water systems (CWS) are a type of public water system that serve the same population year-round [2]. Public water systems are regulated by the U.S. Environmental Protection Agency (EPA) under the Safe Drinking Water Act [4]. The contaminants we evaluated are regulated through federally enforceable maximum contaminant levels (MCLs), which were determined based on economic and technical feasibility, treatment technologies, cost-benefit analysis, and public health benefit for specific health endpoints [4]. States generally have primacy over enforcement of federal drinking water regulations. Notably, the MCL goal, a non-enforceable standard based solely on risk to health, is 0 µg/l for arsenic, uranium, alpha particles, trichloroethylene (TCE), tetrachloroethylene (PCE), bromodichloromethane, bromoform, and dichloroacetic acid, as there is no known safe level of exposure to these contaminants [4]. Private wells are not federally regulated or monitored.

Nitrate is a common contaminant of drinking water supplies in agricultural areas, due to use of nitrogen fertilizers and concentrated animal feeding operation waste [5, 6]. Atmospheric deposition, erosion of natural deposits, and septic tank or sewage leakage contribute to nitrate contamination in rural and urban areas [4]. Geogenic arsenic occurs in groundwater across the U.S., with regional differences due to climatic and geological factors; arid climates can cause evaporative concentration of arsenic in shallow groundwater supplies and lead to high levels, such as in the San Joaquin Valley of California [7,8,9,10]. Mining and historical arsenical pesticide use are anthropogenic sources of arsenic contamination in water supplies [8]. Uranium is present in different rock types and is leached from host mineral phases to surface and ground water supplies; uranium mining/milling and mobilization of uranium via nitrate fertilizer use are anthropogenic sources of uranium contamination [11,12,13,14,15]. Uranium and other radionuclides can decay and release alpha radiation, often quantified as total gross alpha for monitoring compliance purposes. DBPs are formed by the reaction of chlorine and bromine with natural organic compounds during the disinfection of water supplies to treat pathogens [16]. DBPs are commonly found in public water supplies across the U.S., with the highest concentrations observed in those reliant on surface water or shallow groundwater [16]. While over 700 DBPs have been identified, the most abundant classes are trihalomethanes (THMs, which include the chemicals chloroform, dibromochloromethane, bromodichloromethane, and bromoform, and regulated as the sum total, TTHM), and haloacetic acids (HAA5, regulated as the sum of dichloroacetic acid, trichloroacetic acid, monochloroacetic acid, bromoacetic acid, and dibromoacetic acid) [4, 17, 18]. The VOCs TCE and PCE are solvents used in dry cleaning, metal degreasing, textile, art, and industrial processes, and may be found in some consumer products [19]. Toxic waste disposal sites, sometimes recognized as Superfund sites under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), are anthropogenic sources of inorganic arsenic, uranium, TCE, and PCE in groundwater [12, 19,20,21,22,23,24].

Numerous studies implicate one or more of these drinking water contaminants in adverse health effects, including cancer, cardiovascular disease, reproductive and developmental toxicity, nephrotoxicity, and other adverse health conditions [1, 16, 20, 25,26,27,28,29,30,31,32,33,34,35,36,37,38,39]. Inorganic arsenic is classified by the International Agency for Research on Cancer (IARC) as a cause of cancers of the bladder, lung, and skin, and is associated with increased risk of cancers of the kidney, liver, and prostate [26]. Inorganic arsenic is also a potent toxicant associated with numerous adverse health outcomes, including cardiovascular disease, hypertension, and reproductive disorders [26, 31, 32]. Uranium exposure through drinking water is associated with renal damage and nephrotoxicity, and an increased risk of colorectal, breast, kidney, prostate, and total cancer [20, 27, 33]. Nitrate is classified by IARC as a probable human carcinogen when ingested under conditions that result in the endogenous formation of N-nitroso-compounds, most of which are animal carcinogens [28, 34]. Cancers of the stomach, colon, bladder, kidney, ovary, and thyroid, and thyroid disease are associated with elevated nitrate ingested from drinking water; however, the number of studies of most cancer sites is limited [29, 35]. Higher intake of DBPs through drinking water is associated with increased bladder cancer risk, and a limited number of studies suggest DBP exposures are potential risk factors for colon, rectum, and endometrial cancer [16, 36]. TCE is classified as carcinogenic to humans based on kidney cancer, and PCE (Group 2A) as probably carcinogenic to humans based on bladder cancer evidence [30]. Occupational studies also support adverse developmental, neurological, and hepatotoxic effects of TCE and PCE exposures [19]. Assessment of long-term drinking water contaminant exposures and associated health risks have traditionally been limited by the lack of water quality data that could be assigned to individuals in epidemiologic cohorts; understanding large-scale water quality data at the level of consumer intake is a critical research gap [40]. Additionally, there are relatively few cohort studies evaluating drinking water exposures at levels below the MCLs and World Health Organization guidelines that are commonly experienced by the general U.S. population [1]. Inequalities in CWS arsenic, uranium, and nitrate exposures by sociodemographic characteristics such as, race and ethnicity, income, education, region, and rurality/urbanicity have been documented [41, 42]. Few studies have evaluated sociodemographic inequalities in DBP and TCE/PCE exposures in the United States.

Our primary objective for this study was to describe exposure to regulated, frequently detected and measured contaminants in drinking water in the California Teachers Study (CTS), a large prospective cohort of women. We described the spatial linkage of participants’ residences to their drinking water source and corresponding estimates of contaminant concentrations. For a subset, we evaluated the agreement between address-assigned and self-reported drinking water source and described the daily intake of tap water and CWS contaminants. Additionally, we examined inequalities in CWS exposures across sociodemographic groups.

CLICK HERE FOR MORE INFORMATION

https://www.nature.com/articles/s41370-024-00703-9