Machine Learning Predicts Highest-Risk Groundwater Sites to Improve Water Quality Monitoring

 Matt Shipman  

illustration shows a digital screen displaying data related to groundwater quality

For Immediate Release

Yaroslava Yinglingyara_yingling@ncsu.edu

Paul Westerhoffp.westerhoff@asu.edu

Matt Shipmanmatt_shipman@ncsu.edu

An interdisciplinary team of researchers has developed a machine learning framework that uses limited water quality samples to predict which inorganic pollutants are likely to be present in a groundwater supply. The new tool allows regulators and public health authorities to prioritize specific aquifers for water quality testing.

This proof-of-concept work focused on Arizona and North Carolina but could be applied to fill critical gaps in groundwater quality in any region.

Groundwater is a source of drinking water for millions and often contains pollutants that pose health risks. However, many regions lack complete groundwater quality datasets.

“Monitoring water quality is time-consuming and expensive, and the more pollutants you test for, the more time-consuming and expensive it is,” says Yaroslava Yingling, co-corresponding author of a paper describing the work and Kobe Steel Distinguished Professor of Materials Science and Engineering at North Carolina State University.

“As a result, there is interest in identifying which groundwater supplies should be prioritized for testing, maximizing limited monitoring resources,” Yingling says. “We know that naturally occurring pollutants, such as arsenic or lead, tend to occur in conjunction with other specific elements due to geological and environmental factors. This posed an important data question: with limited water quality data for a groundwater supply, could we predict the presence and concentrations of other pollutants?”

“Along with identifying elements that pose a risk to human health, we also wanted to see if we could predict the presence of other elements – such as phosphorus – which can be beneficial in agricultural contexts but may pose environmental risks in other settings,” says Alexey Gulyuk, a co-first author of the paper and a teaching professor of materials science and engineering at NC State.

To address this challenge, the researchers drew on a huge data set, encompassing more than 140 years of water quality monitoring data for groundwater in the states of North Carolina and Arizona. Altogether, the data set included more than 20 million data points, covering more than 50 water quality parameters.

“We used this data set to ‘train’ a machine learning model to predict which elements would be present based on the available water quality data,” says Akhlak Ul Mahmood, co-first author of this work and a former Ph.D. student at NC State. “In other words, if we only have data on a handful of parameters, the program could still predict which inorganic pollutants were likely to be in the water, as well as how abundant those pollutants are likely to be.”

One key finding of the study is that the model suggests pollutants are exceeding drinking water standards in more groundwater sources than previously documented. While actual data from the field indicated that 75-80% of sampled locations were within safe limits, the machine learning framework predicts that only 15% to 55% of the sites may truly be risk-free.

“As a result, we’ve identified quite a few groundwater sites that should be prioritized for additional testing,” says Minhazul Islam, co-first author of the paper and a Ph.D. student at Arizona State University. “By identifying potential ‘hot spots,’ state agencies and municipalities can strategically allocate resources to high-risk areas, ensuring more targeted sampling and effective water treatment solutions”

“It’s extremely promising and we think it works well,” Gulyuk says. “However, the real test will be when we begin using the model in the real world and seeing if the prediction accuracy holds up.”

Moving forward, researchers plan to enhance the model by expanding its training data across diverse U.S. regions; integrating new data sources, such as environmental data layers, to address emerging contaminants; and conducting real-world testing to ensure robust, targeted groundwater safety measures worldwide.

“We see tremendous potential in this approach,” says Paul Westerhoff, co-corresponding author and Regents’ Professor in the School of Sustainable Engineering and the Built Environment at ASU. “By continuously improving its accuracy and expanding its reach, we’re laying the groundwork for proactive water safety measures across the globe.”

“This model also offers a promising tool for tracking phosphorus levels in groundwater, helping us identify and address potential contamination risks more efficiently,” says Jacob Jones, director of the National Science Foundation-funded Science and Technologies for Phosphorus Sustainability (STEPS) Center at NC State, which helped fund this work. “Looking ahead, extending this model to support broader phosphorus sustainability could have a significant impact, enabling us to manage this critical nutrient across various ecosystems and agricultural systems, ultimately fostering more sustainable practices.”

The paper, “Multiple Data Imputation Methods Advance Risk Analysis and Treatability of Co-occurring Inorganic Chemicals in Groundwater,” is published open access in the journal Environmental Science & Technology. The paper was co-authored by Emily Briese and Mohit Malu, both Ph.D. students at Arizona State; Carmen Velasco, a former postdoctoral researcher at Arizona State; Naushita Sharma, a postdoctoral researcher at Oak Ridge National Laboratory; and Andreas Spanias, a professor of digital signal processing at Arizona State.

This work was supported by the NSF STEPS Center; and by the Metals and Metal Mixtures: Cognitive Aging, Remediation and Exposure Sources (MEMCARE) Superfund Research Center based at Harvard University, which is supported by the National Institute of Environmental Health Science under grant P42ES030990.

-shipman-

Note to Editors: The study abstract follows.

“Multiple Data Imputation Methods Advance Risk Analysis and Treatability of Co-occurring Inorganic Chemicals in Groundwater”

Authors: Akhlak U. Mahmood, Alexey V. Gulyuk and Yaroslava G. Yingling, North Carolina State University; Minhazul Islam, Emily Briese, Carmen A. Velasco, Mohit Malu, Naushita Sharma, Andreas Spanias and Paul Westerhoff, Arizona State University

Published: Nov. 7, Environmental Science & Technology

DOI: 10.1021/acs.est.4c05203

Abstract: Accurately assessing and managing risks associated with inorganic pollutants in groundwater is imperative. Historic water quality databases are often sparse due to rationale or financial budgets for sample collection and analysis, posing challenges in evaluating exposure or water treatment effectiveness. We utilized and compared two advanced multiple data imputation techniques, AMELIA and MICE algorithms, to fill gaps in sparse groundwater quality data sets. AMELIA outperformed MICE in handling missing values, as MICE tended to overestimate certain values, resulting in more outliers. Field data sets revealed that 75% to 80% of samples exhibited no co-occurring regulated pollutants surpassing MCL values, whereas imputed values showed only 15% to 55% of the samples posed no health risks. Imputed data unveiled a significant increase, ranging from 2 to 5 times, in the number of sampling locations predicted to potentially exceed health-based limits and identified samples where 2 to 6 co-occurring chemicals may occur and surpass health-based levels. Linking imputed data to sampling locations can pinpoint potential hotspots of elevated chemical levels and guide optimal resource allocation for additional field sampling and chemical analysis. With this approach, further analysis of complete data sets allows state agencies authorized to conduct groundwater monitoring, often with limited financial resources, to prioritize sampling locations and chemicals to be tested. Given existing data and time constraints, it is crucial to identify the most strategic use of the available resources to address data gaps effectively. This work establishes a framework to enhance the beneficial impact of funding groundwater data collection by reducing uncertainty in prioritizing future sampling locations and chemical analyses.

CLICK HERE FOR MORE INFORMATION

https://news.ncsu.edu/2024/11/predicting-risk-in-groundwater-supplies/?

Development, agriculture present risks for drinking water quality

Date:May 6, 2025

Source:North Carolina State University

Summary:Converting forest land to urban development or agricultural use can present risks to water quality when done near streams or river sources. This study examined data from 15 water treatment plants in the Middle Chattahoochee watershed to model the impacts of four potential land use scenarios several decades into the future.Share:

    

FULL STORY


A new study from North Carolina State University researchers finds that conversion of forests to urban development or agriculture near streams can have harmful effects on water quality downstream, presenting both health concerns and raising the cost of water treatment.

Using a model called the Soil and Water Assessment Tool, researchers mapped out the current and projected future effects of four land-use scenarios at 15 water intake locations across the Middle Chattahoochee watershed in Georgia and Alabama. By combining a series of potential socioeconomic outcomes and climate change models reaching out to 2070, researchers examined several potential land use change scenarios to predict their effects on water quality.

Katherine Martin, associate professor in the NC State University College of Natural Resources and co-author of a paper on the study, said that in models where forest cover was converted to other land uses, water quality suffered.

“In terms of aspects of water quality that we have long term data on, two of the biggest are nitrogen levels and the amount of sediment in the water. Looking at those two, in places where we’re losing forest cover, we see both of those increasing,” she said. “Those are both detrimental to the quality of drinking water, and they require more filtration.”

Part of the issue, Martin said, is the relatively high level of fertilizer used in large-scale agriculture. Urban development results in large areas of impermeable surfaces, where rainwater cannot soak into the ground and instead runs off into rivers and streams. This causes the water to carry more sediment into those waterways than it would if it had been absorbed into the ground.

Increased filtration has several knock-on effects, Martin said. Not only is it potentially harmful for aquatic life, but it also increases the cost of managing water treatment plants. For facilities that do not serve large populations, this can lead to large per-capita price increases that end up being passed on to residents. These areas are also more likely to see increased development, due to their abundance of open land. The study suggests that more attention should be paid to where development might have serious effects on water quality for people living nearby, Martin said.

“Agriculture and urban development are beneficial, and this study does not say otherwise,” she said. “What we are seeing is that there are tradeoffs when we lose forest cover, and we need to open up the conversation about those.”

This work was supported by the U.S. Department of Agriculture Forest Service Southern Research Station agreement number 20-CS-11330180-053.

CLICK HERE FOR MORE INFORMATION

https://www.sciencedaily.com/releases/2025/05/250506131518.htm?

Harmful microplastics infiltrating drinking water

Wastewater treatment plants are still not effectively removing dangerous microplastics

Date:April 21, 2025

Source:University of Texas at Arlington

Summary:Despite advances in wastewater treatment, tiny plastic particles called microplastics are still slipping through, posing potential health and environmental hazards, according to new research.Share:

    

FULL STORY


Despite advances in wastewater treatment, tiny plastic particles called microplastics are still slipping through, posing potential health and environmental hazards, according to new research from The University of Texas at Arlington.

Because plastic is inexpensive to produce yet lightweight and sturdy, manufacturers have found it ideal for use in nearly every consumer good, from food and beverage packaging to clothing and beauty products. The downside is that when a plastic item reaches the end of its useful life, it never truly disappears. Instead, it breaks down into smaller and smaller pieces called microplastics — particles five millimeters or less, about the width of a pencil eraser — that end up in our soil and water.

“What our systematic literature review found is that while most wastewater treatment facilities significantly reduce microplastics loads, complete removal remains unattainable with current technologies,” said Un-Jung Kim, assistant professor of earth and environmental sciences at UT Arlington and senior author of the study published in Science of the Total Environment.

“As a result, many microplastics are being reintroduced into the environment, likely transporting other residual harmful pollutants in wastewater, such the chemicals Bisphenols, PFAS and antibiotics,” Dr. Kim added. “These microplastics and organic pollutants would exist in trace level, but we can get exposure through simple actions like drinking water, doing laundry or watering plants, leading to potential long-term serious human health impacts such as cardiovascular disease and cancer.”

According to the study, one of the main challenges in detecting and mitigating microplastics is the lack of standardized testing methods. The researchers also call for a unified approach to define what size particle qualifies as a microplastic.

“We found that the effectiveness of treatments varies depending on the technology communities use and how microplastics are measured to calculate the removal rates,” said the study’s lead author, Jenny Kim Nguyen. “One way to better address the growing microplastics issue is to develop standardized testing methods that provide a clearer understanding of the issue.”

Nguyen began this research as an undergraduate student in Kim’s Environmental Chemistry Lab. She is now pursuing a master’s degree in earth and environmental sciences at UTA, where she is working to develop standardized experimental protocols for studying microplastics in air and water.

“This work helps us understand the current microplastics problem, so we can address its long-term health impacts and establish better mitigation efforts,” said Karthikraj Rajendiran, a co-author of the study and assistant professor of research from UTA’s Bone Muscle Research Center within the College of Nursing and Health Innovations.

The team also emphasizes the need for greater public awareness of microplastics to help consumers make more eco-friendly choices.

“While communities must take steps to improve microplastic detection and screening at the wastewater and water quality monitoring, consumers can already make a difference by choosing to buy clothing and textiles with less plastics whenever feasible, knowing that microfibers are the most common microplastic continually released through wastewater,” Kim added.

Funding for the project was provided by UTA’s Research Enhancement Program, which supports multidisciplinary researchers in launching new projects.

CLICK HERE FOR MORE INFORMATION

https://www.sciencedaily.com/releases/2025/04/250421162936.htm?

Twenty-year study shows cleaner water slashes cancer and heart disease deaths

Date:November 27, 2025

Source:Columbia University’s Mailman School of Public Health

Summary:A 20-year project in Bangladesh reveals that lowering arsenic levels in drinking water can slash death rates from major chronic diseases. Participants who switched to safer wells had the same risk levels as people who were never heavily exposed. The researchers tracked individual water exposure with detailed urine testing. Their results show how quickly health improves once contaminated water is replaced.Share:

    

FULL STORY


Safer Wells Save Lives in Bangladesh
Cleaner water dramatically reduces chronic disease deaths, even for those exposed to arsenic for years. Credit: Shutterstock

A large 20-year investigation following nearly 11,000 adults in Bangladesh found that reducing arsenic in drinking water was tied to as much as a 50 percent drop in deaths from heart disease, cancer and several other chronic illnesses. The research offers the strongest long-term evidence so far that lowering arsenic exposure can reduce mortality, even for people who lived with contaminated water for many years. These results appear in JAMA.

Scientists from Columbia University, the Columbia Mailman School of Public Health and New York University led the analysis, which addresses a widespread health concern. Naturally occurring arsenic in groundwater remains a significant challenge across the world. In the United States, more than 100 million people depend on groundwater that can contain arsenic, particularly those using private wells. Arsenic continues to be one of the most common chemical contaminants in drinking water.

“We show what happens when people who are chronically exposed to arsenic are no longer exposed,” said co-lead author Lex van Geen of the Lamont-Doherty Earth Observatory, part of the Columbia Climate School. “You’re not just preventing deaths from future exposure, but also from past exposure.”

Two Decades of Data Strengthen the Evidence

Co-lead author Fen Wu of NYU Grossman School of Medicine said the findings offer the clearest proof yet of the connection between lowering arsenic exposure and reduced mortality risk. Over the course of two decades, the researchers closely tracked participants’ health and repeatedly measured arsenic through urine samples, which strengthened the precision of their analysis.

“Seeing that our work helped sharply reduce deaths from cancer and heart disease, I realized the impact reaches far beyond our study to millions in Bangladesh and beyond now drinking water low in arsenic,” said Joseph Graziano, Professor Emeritus at Columbia Mailman School of Public Health and principal investigator of the NIH-funded program. “A 1998 New York Times story first brought us to Bangladesh. More than two decades later, this finding is deeply rewarding. Public health is often the ultimate delayed gratification.”

Clear Drop in Risk When Arsenic Exposure Falls

People whose urinary arsenic levels fell from high to low had mortality rates that matched those who had consistently low exposure for the entire study. The size of the drop in arsenic was closely tied to how much mortality risk declined. Those who continued drinking high-arsenic water did not show any reduction in chronic disease deaths.

Arsenic naturally accumulates in groundwater and has no taste or smell, meaning people can drink contaminated water for years without knowing it. In Bangladesh, an estimated 50 million people have consumed water exceeding the World Health Organization’s guideline of 10 micrograms per liter. The WHO has described this as the largest mass poisoning in history.

From 2000 to 2022, the Health Effects of Arsenic Longitudinal Study (HEALS) monitored thousands of adults in Araihazar, Bangladesh. The project tested more than 10,000 wells in a region where many families rely on shallow tube wells with arsenic levels ranging from extremely low to dangerously high.

Researchers periodically measured arsenic in participants’ urine, a direct marker of internal exposure, and recorded causes of death. These detailed data allowed the team to compare long-term health outcomes for people who reduced their exposure with those who remained highly exposed.

Community Efforts Created a Natural Comparison Group

Throughout the study period, national and local programs labeled wells as safe or unsafe based on arsenic levels. Many households switched to safer wells or installed new ones, while others continued using contaminated water. This created a natural contrast that helped researchers understand the effects of reducing exposure.

Arsenic exposure decreased substantially in Araihazar during the study. The concentration in commonly used wells fell by about 70 percent as many families sought cleaner water sources. Urine tests confirmed a corresponding decline in internal exposure, averaging a 50 percent reduction that persisted through 2022.

Reduced Exposure Brings Lasting Health Benefits

These trends held true even after researchers accounted for differences in age, smoking and socioeconomic factors. Participants who remained highly exposed, or whose exposure rose over time, continued to face significantly higher risks of death from chronic diseases.

The researchers compared the health benefits of lowering arsenic to quitting smoking. The risks do not disappear immediately but drop gradually as exposure decreases.

In Bangladesh, well testing, labeling unsafe sources, drilling private wells and installing deeper government wells have already improved water safety for many communities.

“Our findings can now help persuade policymakers in Bangladesh and other countries to take emergency action in arsenic ‘hot spots’,” said co-author Kazi Matin Ahmed of the University of Dhaka.

To reach more households, the research team is collaborating with the Bangladeshi government to make well data easier to access. They are piloting NOLKUP (“tubewell” in Bangla), a free mobile app created from more than six million well tests. Users can look up individual wells, review arsenic levels and depths, and locate nearby safer options. The tool also helps officials identify communities that need new or deeper wells.

Clean Water Investments Can Save Lives

The study shows that health risks can fall even for people who were exposed to arsenic for years. This highlights an important opportunity: investing in clean water solutions can save lives within a single generation.

“Sustainable funding to support the collection, storage and maintenance of precious samples and data over more than 20 years have made this critically important work possible,” said Ana Navas-Acien, MD, PhD, Professor and Chair of Environmental Health Sciences at Columbia Mailman School of Public Health. “Science is difficult and there were challenges and setbacks along the way, but we were able to maintain the integrity of the samples and the data even when funding was interrupted, which has allowed us to reveal that preventing arsenic exposure can prevent disease.”

The study team included researchers from Columbia University’s Mailman School of Public Health, the New York University Grossman School of Medicine, Lamont-Doherty Earth Observatory, Boston University School of Public Health, the Department of Geology at the University of Dhaka and the Institute for Population and Precision Health at the University of Chicago.

The HEALS project was launched by Columbia University through the National Institute of Environmental Health Sciences’ Superfund Research Program, with most U.S. collaborators based at Columbia when the study began.

CLICK HERE FOR MORE INFORMATION

https://www.sciencedaily.com/releases/2025/11/251127010327.htm?

ASM and AGU Offer Critical Strategies to Protect Public Health and Safe Drinking Water Amid Climate Change

June 9, 2025

Washington, D.C.—The American Academy of Microbiology, the honorific leadership group and think tank within the American Society for Microbiology (ASM), and the American Geophysical Union (AGU) have released a new report, Water, Waterborne Pathogens and Public Health: Environmental Drivers. Developed by leading scientists and informed by expert deliberations from a December 2024 colloquium organized by ASM and AGU, with support from the Association for the Sciences of Limnology and Oceanography (ASLO), the report presents a holistic strategy to reduce waterborne infections and safeguard public health as climate change increasingly disrupts water systems worldwide. 

“Water is a critical determinant of both ecosystem integrity and human health, yet it is increasingly compromised by anthropogenic pressures and broader environmental change,” said Dr. Rita Colwell, Co-Chair of the Colloquium Steering Committee, former ASM President and past Chair of the Academy. “Addressing this public health risk requires coordinated, cross-disciplinary strategies for effective microbial and environmental surveillance, early-warning systems and support for resilient water infrastructure that can withstand intensifying climate stressors.” 

Each year, more than 3.5 million people die from waterborne illnesses, with the heaviest burden falling on low- and middle-income countries, where over 4 billion people rely on water sources that are often unmonitored and unsafe. While many microbes that exist in water are harmless, some can cause serious disease when humans drink or interact with contaminated water. Environmental changes through more frequent and intense floods, hurricanes and heatwaves, coupled with aging infrastructure, are increasing human exposure to waterborne pathogens and threatening access to safe drinking water. 

The report is part of the Academy’s Climate Change & Microbes Scientific Portfolio, a 5-year initiative to advance microbial science to inform climate policy, foster innovation and support development of microbial technologies that can be applied globally. Supported by a grant from the Burroughs Wellcome Fund (BWF), the report shares expert-driven insights and highlights key strategies to strengthen prevention and response to waterborne disease outbreaks, including:   

  • Enhance surveillance and monitoring: Implement robust systems to track water quality and pathogen presence. 
  • Modernize water infrastructure: Invest in advanced water treatment and distribution systems to ensure safe drinking water. 
  • Promote interdisciplinary research: Initiate collaboration across microbial sciences, hydrology and climate science to address health relevant challenges. 
  • Improve public awareness and engagement: Raise awareness of the importance of safe water and sanitation and engage local communities to develop collaborative solutions. 

“Microbial datasets and environmental monitoring are foundational to explaining the dynamic interdependencies between ecological processes and human health outcomes,” said Antarpreet Jutla, Ph.D., Co-Chair of the Colloquium Steering Committee, AGU member and recipient of AGU’s 2023 Charles S. Falkenberg Award. “Integrating these data streams within interdisciplinary, systems-based frameworks facilitates the design of adaptive infrastructure and predictive modeling platforms, ultimately strengthening public health resilience and promoting socio-economic stability in the context of accelerating environmental change.” 

While a wealth of environmental and weather data, public health information and waterborne pathogen monitoring exists, resources for this information are often siloed. The report emphasizes integrating data systems with technologies like artificial intelligence and machine learning to develop predictive models for communities that allow proactive warning of waterborne disease outbreaks. 

Investment in water infrastructure that addresses region-specific geographical and environmental conditions and meets the needs of local communities is critical. The report highlights the promise of microbes as a nature-based solution that improves water treatment, prevents infrastructure degradation and provides new ways to build systems that hold up against changing weather parameters. 

Ultimately, addressing these challenges will require cross-disciplinary collaboration. The report calls for active engagement with local communities, especially those most affected by water insecurity, to co-develop effective and long-lasting solutions.  

“Safeguarding global health demands an integrated perspective and coordinated action,” said Jay Lennon, Ph.D., Chair of the Academy Climate Change Task Force. “Around the globe, scientists, public health advocates, policymakers, local leaders and philanthropists must work hand in hand to build a future where every person has access to safe and reliable water.” 

###
The American Society for Microbiology is one of the largest professional societies dedicated to the life sciences and is composed of over 32,000 scientists and health practitioners. ASM’s mission is to promote and advance the microbial sciences. 
 
ASM advances the microbial sciences through conferences, publications, certifications, educational opportunities and advocacy efforts. It enhances laboratory capacity around the globe through training and resources. It provides a network for scientists in academia, industry and clinical settings. Additionally, ASM promotes a deeper understanding of the microbial sciences to all audiences. 

###
The American Geophysical Union is an international association of more than 60,000 advocates and experts in Earth and space science. Fundamental to our mission since our founding in 1919 is to live our values, which we do through our net zero energy building in Washington, D.C., and by making scientific discoveries and research accessible and engaging to all to help protect society and prepare global citizens for the challenges and opportunities ahead.

###
The Association for the Sciences of Limnology and Oceanography (ASLO) is an international aquatic science society that was founded in 1948. For more than 70 years, it has been the leading professional organization for researchers and educators in the field of aquatic science. The purpose of ASLO is to foster a diverse, international scientific community that creates, integrates and communicates knowledge across the full spectrum of aquatic sciences, advances public awareness and education about aquatic resources and research and promotes scientific stewardship of aquatic resources for the public interest. Its products and activities are directed toward these ends. With 3,000 members in more than 70 countries worldwide, the society has earned an outstanding reputation and is best known for its journals and interdisciplinary meetings. For more information about ASLO, please visit our website

CLICK HERE FOR MORE INFORMATION

https://asm.org/press-releases/2025/june/asm-and-agu-offer-critical-strategies-to-protect-p?

Scientists discover what’s linking floods and droughts across the planet

Date:January 13, 2026

Source:University of Texas at Austin

Summary:Scientists tracking Earth’s water from space discovered that El Niño and La Niña are synchronizing floods and droughts across continents. When these climate cycles intensify, far-apart regions can become unusually wet or dangerously dry at the same time. The study also found a global shift about a decade ago, with dry extremes becoming more common than wet ones. Together, the results show that water crises are part of a global pattern, not isolated events.Share:

    

FULL STORY


Earth’s Water Extremes Are Suddenly Linked
Across the globe, floods and droughts aren’t striking at random — they’re moving to a shared rhythm driven by El Niño and La Niña. Credit: Shutterstock

Droughts and floods can disrupt daily life, damage ecosystems, and strain local and global economies. Scientists at The University of Texas at Austin set out to better understand these water extremes by studying how they develop and spread across the planet. Their work points to a powerful climate force that links distant regions in surprising ways.

A new study published in AGU Advances shows that during the past 20 years, ENSO, a recurring climate pattern in the equatorial Pacific Ocean that includes El Niño and La Niña, has played the leading role in driving extreme changes in total water storage worldwide. The researchers also found that ENSO tends to line up these extremes so that different continents experience unusually wet or dry conditions at the same time.

Why Synchronized Extremes Matter

According to study co-author Bridget Scanlon, a research professor at the Bureau of Economic Geology at the UT Jackson School of Geosciences, understanding these global patterns has real-world consequences.

“Looking at the global scale, we can identify what areas are simultaneously wet or simultaneously dry,” Scanlon said. “And that of course affects water availability, food production, food trade — all of these global things.”

When multiple regions face water shortages or excesses at once, the impacts can ripple through agriculture, trade, and humanitarian planning.

Measuring All the Water on Earth

Total water storage is a key climate indicator because it accounts for all forms of water in a region. This includes rivers and lakes, snow and ice, moisture in the soil, and groundwater below the surface. By focusing on this full picture, researchers can better understand how water moves and changes over time.

The study is one of the first to examine total water storage extremes alongside ENSO (The El Niño-Southern Oscillation) on a global scale. This approach made it possible to see how extreme wet and dry conditions are connected across large distances, said lead author Ashraf Rateb, a research assistant professor at the bureau.

“Most studies count extreme events or measure how severe they are, but by definition extremes are rare. That gives you very few data points to study changes over time,” Rateb said. “Instead, we examined how extremes are spatially connected, which provides much more information about the patterns driving droughts and floods globally.”

Satellites Reveal Hidden Water Changes

To estimate total water storage, the scientists relied on gravity measurements from NASA’s GRACE and GRACE Follow-On (GRACE-FO) satellites. These data allow researchers to detect changes in water mass over areas about 300 to 400 kilometers wide, roughly the size of Indiana.

The team classified wet extremes as water storage levels above the 90th percentile for a given region. Dry extremes were defined as levels below the 10th percentile.

Their analysis showed that unusual ENSO activity can push widely separated parts of the world into extreme conditions at the same time. In some regions, El Niño is linked to dry extremes, while in others the same dry conditions are associated with La Niña. Wet extremes tend to follow the opposite pattern.

Real-World Examples Across Continents

The researchers pointed to several striking cases. During the mid-2000s, El Niño coincided with severe dryness in South Africa. Another El Niño event was linked to drought in the Amazon during 2015-2016. By contrast, La Niña in 2010-2011 brought exceptionally wet conditions to Australia, southeast Brazil, and South Africa.

Beyond individual events, the study also identified a broader shift in global water behavior around 2011-2012. Before 2011, unusually wet conditions were more common worldwide. After 2012, dry extremes began to dominate. The researchers attribute this change to a long-lasting climate pattern in the Pacific Ocean that influences how ENSO affects global water.

Filling the Gaps in Satellite Records

Because GRACE and GRACE-FO data are not continuous, including an 11-month gap between missions in 2017-2018, the team used probabilistic models based on spatial patterns to reconstruct missing periods of total water storage extremes.

Although the satellite record covers only 22 years (2002-2024), it still reveals how closely climate and water systems are linked across the Earth, said JT Reager, deputy project scientist for the GRACE-FO mission at NASA’s Jet Propulsion Laboratory and JPL Discipline Program manager for the Water and Energy Cycle.

“They’re really capturing the rhythm of these big climate cycles like El Niño and La Niña and how they affect floods and droughts, which are something we all experience,” said Reager, who was not involved in the study. “It’s not just the Pacific Ocean out there doing its own thing. Everything that happens out there seems to end up affecting us all here on land.”

Preparing for Extremes, Not Just Shortages

Scanlon said the findings underscore the need to rethink how society talks about water challenges. Instead of focusing only on scarcity, she said, it is critical to plan for swings between too much and too little water.

“Oftentimes we hear the mantra that we’re running out of water, but really it’s managing extremes,” Scanlon said. “And that’s quite a different message.”

The research was funded by the UT Jackson School of Geosciences.

CLICK HERE FOR MORE INFORMATION

https://www.sciencedaily.com/releases/2026/01/260112214304.htm?

Villagers drank sinkhole water as a ‘miracle cure’, until officials found dangerous bacteria

TOI World Desk / TIMESOFINDIA.COM / Jan 19, 2026, 04:24 IST

Villagers drank sinkhole water as a 'miracle cure', until officials found dangerous bacteria

Residents in West Sumatra, Indonesia have been urged to stop collecting and drinking water from a newly formed sinkhole after authorities found it was contaminated with E. coli, a bacteria linked to serious gastrointestinal illness.The incident unfolded in Limapuluh Kota Regency, where a large ground collapse drew crowds of locals who believed the water pooling inside the sinkhole had medicinal properties. Videos and posts showing people lining up with bottles quickly spread online, turning the site into an unlikely “healing water” destination.That belief, officials say, is not just unproven. It could be dangerous.

Authorities warn water is unsafe

West Sumatra’s Deputy Governor Vasko Ruseimy publicly cautioned residents not to consume the water after tests showed it contained Escherichia coli (E. coli). Reports citing early findings from the Geological Agency and local health checks said the water did not meet safe drinking standards, and officials warned against using it for “health” or “treatment” claims.E. coli contamination is often considered a red-flag indicator because it can suggest the presence of harmful pathogens introduced through surface runoff, soil contamination, or waste intrusion.

Where the sinkhole appeared

The sinkhole reportedly opened in a rice field area in Jorong Tepi, Nagari Situjuah Batua, part of Limapuluh Kota Regency. Indonesian authorities and geology experts began assessing the site soon after it was reported, as concern grew about whether the collapse could expand.A geology expert from Universitas Gadjah Mada (UGM) said the phenomenon was shaped by local geological conditions and was likely triggered by heavy rainfall, linking it to wider hydrometeorological impacts felt across parts of Sumatra.

Why sinkholes happen in the first place

Sinkholes form when the ground surface collapses into an underground gap. In many cases, that gap grows silently over time, then fails suddenly.Experts say several factors can cause this:1) Hidden erosion beneath the surfaceWater moving underground can gradually carry away soil particles in a process sometimes described as “piping erosion”, eventually creating a hollow space large enough for the ground above to give way.2) Intense rainfall and flooding pressureHeavy rain can destabilise soil layers, accelerate erosion, and raise groundwater pressure. Even if the ground has been weakening for months or years, extreme rainfall can be the final trigger.3) Landscape vulnerabilitySome areas are naturally more prone to collapses depending on soil composition, underground drainage patterns, and whether the land has been altered by farming, construction, or shifting water channels.In practical terms, sinkholes are not just dramatic “holes in the ground”. They are often a sign that the underground structure has changed, and that nearby land may still be unstable.

Why drinking sinkhole water can be risky even if it looks clear

One reason the West Sumatra case drew alarm is how quickly “clean-looking” water was assumed to be safe.But sinkholes can act like natural funnels, pulling in contaminants from surrounding areas, including:

  • animal waste from nearby fields
  • bacteria from soil and surface runoff
  • agricultural contamination
  • drainage seepage

Even if the water appears clear, it may still carry harmful organisms. That’s why officials moved quickly to warn residents once E. coli was detected.

A public health warning wrapped inside a viral moment

The sinkhole water episode has become a reminder of how fast health misinformation can spread when fear, curiosity, and hope collide. For some residents, the attraction was not spectacle but belief: that unusual natural phenomena can offer cures.Authorities, however, have taken a firm line. Their message is simple: do not drink it.As officials monitor the site for further ground movement, the bigger risk may no longer be the sinkhole itself, but what happens when viral belief outruns basic water safety.

CLICK HERE FOR MORE INFORMATION

https://timesofindia.indiatimes.com/world/rest-of-world/villagers-drank-sinkhole-water-as-a-miracle-cure-until-officials-found-dangerous-bacteria/articleshow/126663770.cms?

Scientists Say This Simple Underground Fix Could Keep PFAS Out of Drinking Water

In real-world testing, researchers found that a carbon-based material placed underground sharply lowered PFAS in groundwater and required minimal maintenance.

By Stacey Leasca

Published on January 16, 2026

How to Make Spanakopita-Inspired Potato Crust QuicheClose

Person pouring water from a glass bottle into a glass indoor background
Credit: Viktoriya Skorikova / Getty Images
  • Scientists from Brown University, the University of Minnesota, and the U.S. Navy found that injecting colloidal carbon into contaminated soil can trap PFAS chemicals underground, dramatically reducing contamination.
  • In field tests, PFAS concentrations fell from over 50,000 nanograms per liter to undetectable levels within 10 months, capturing both long- and short-chain PFAS compounds.
  • The approach could cost less than half as much as current cleanup methods and require minimal maintenance, offering a sustainable solution for communities dealing with PFAS pollution.

Over decades, per- and polyfluoroalkyl substances (PFAS) have slowly woven their way into our daily lives, without most of us ever noticing. They’re the stuff that prevents your eggs from sticking to the frying pan, waterproofs your jackets, allows makeup to last an entire day, and keeps those fast-food wrappers grease-resistant.

They’re also the stuff that earned the unsettling nickname “forever chemicals” thanks to carbon-fluorine bonds so strong that once these chemicals enter the environment, they tend to stay there. Forever. And that durability has become a serious problem. Scientists are increasingly recognizing that PFAS may cause a range of health issues, even as these chemicals have been detected in groundwater near military bases, airports, industrial sites, and municipal water systems across the United States. Cleaning them up has proven frustratingly difficult, expensive, and often temporary. Public-facing advice has often focused on avoiding products that contain PFAS or relying on above-ground water filtration, which requires almost constant upkeep. But now a few savvy researchers say they may soon have a solution for that, too.

​Researchers from Brown University and the University of Minnesota, alongside industry partners and the U.S. Navy, tested whether an ultrafine carbon material could be injected directly into contaminated soil to trap PFAS in place. Their findings, published in The Journal of Hazardous Materials, show that it may be a wild enough idea to work.

The team tested an activated carbon material known as “colloidal carbon,” which acts like a microscopic sponge that can trap PFAS chemicals underground. They began by trialing it in lab conditions, collecting soil from a contaminated site, before testing it on the real thing, taking it to a field at a Navy training area known to have extremely high PFAS levels.

https://www.foodandwine.com/embed?url=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DP-x-FXvsjTw&id=mntl-sc-block_10-0-iframe&options=e30%3D&docId=11883002

​The researchers ran a “push-pull” test, injecting the carbon into the ground, creating an underground treatment zone where PFAS bind as groundwater flows through the net, then pumping the water back out to measure how much of the PFAS made it through. In their tests, the PFAS concentrations dropped from more than 50,000 nanograms per liter to tktk, below detection limits, within 10 months. Importantly, the carbon net captures both long-chain and short-chain PFAS. This is a big deal for the potential cleanup of these forever chemicals because short-chain PFAS are harder to remove, yet are becoming increasingly common as manufacturers move away from older compounds.

​Just as important from an economic standpoint is that, according to the team’s analysis, the long-term operating costs of this carbon-based approach would be less than half those of the existing PFAS remedies. And because the system would exist underground, it would require little maintenance.

Your Beer May Contain ‘Forever Chemicals,’ According to New Research

“This study shows that we can create an effective treatment zone underground that dramatically reduces PFAS levels with far lower long-term costs,” Matt Simcik, a professor in the School of Public Health and co-author of the study, shared in a statement. “The effectiveness of this method, combined with the fact that the system requires very little ongoing maintenance, makes this a promising option for real-world cleanup efforts. For communities facing PFAS contamination, this represents a major step forward toward practical, sustainable technologies that can protect drinking water and reduce long-term exposure risks.”

​It’s critical to note that this isn’t a silver bullet — at least not yet. The researchers are clear that more work is needed to understand how long underground carbon remains effective and how it could perform under different soil conditions. But the study does offer some good news and a potentially practical path forward in the fight against forever chemicals. And, on a similarly impactful note, it shows just how important it is that we work on this issue together.

​”The project shows the importance of partnerships between practitioners, government, and academia,” William Arnold, a professor in the College of Science and Engineering, said. “The expertise, experience, and insight of the individuals who made up the team were needed for this lab-to-field project to succeed.”

CLICK HERE FOR MORE INFORMATION

https://www.foodandwine.com/carbon-based-filter-removes-pfas-in-contaminated-groundwater-11883002?

Over 38,000 Gallons of Water Have Been Recalled Due to ‘Foreign Black Substance’ Contamination

The gallon jugs were shipped to store locations in six states nationwide

By Moná Thomas 

Published on January 15, 2026 11:55AM EST

Leave a Comment

water bottles on an automated conveyor belt, Bottled water production line
water bottles on an automated conveyor belt, Bottled water production line.Credit : cofotoisme/Getty

NEED TO KNOW

  • 38,043 gallons of Meijer Steam Distilled Water have been recalled
  • The enforcement reports cite “floating black foreign substance” contamination for the recall
  • The company has yet to issue a statement confirming the nature of the foreign substance

More than 38,000 gallons of bottled water have been recalled after an Enforcement Report from the U.S. Food and Drug Administration (FDA) revealed a “floating black foreign substance” appearing inside gallon-sized jugs.

According to a notice published by the FDA, the recall involves Meijer Steam Distilled Water, which is sold in one-gallon plastic containers with red caps. Meijer voluntarily initiated the recall in November 2025, and it remains ongoing as officials continue to review the issue. In total, 38,043 gallons of the product are affected.

Meijer Distilled Water, Recall
Meijer Distilled Water, Recall.Meijer 

The affected jugs can be identified by a best-by date of Oct. 4, 2026, along with lot code 39-222 #3 and a UPC code of 041250841197. Meijer item codes tied to the recall include Product ID 472859 and Item Code 477910.

The recalled water was distributed to Meijer stores across Illinois, Indiana, Kentucky, Michigan, Ohio and Wisconsin. Consumers who purchased distilled water in those states are urged to check their containers carefully.

Our new app is here! Free, fun and full of exclusives. Scan to download now!

According to the FDA notice, the issue stems from the presence of a black substance floating inside the water, though the exact source and composition of the material have not been publicly identified. The agency has not yet assigned a recall classification, which typically indicates how serious a potential health risk may be.

Meijer did not initially respond to PEOPLE’s request for comment.

Distilled water is often used for more than just drinking. Many consumers rely on it for medical devices, such as CPAP machines, according to Verywell Health, as well as for infant formula preparation and sinus rinses, where water purity is especially important. Because of that, officials say consumers should stop using the recalled water immediately, even if no health issues are apparent.

At this time, no illnesses or injuries have been reported in connection with the recalled product. Still, the FDA advises anyone who has the affected water to either dispose of it safely or return it to a Meijer store for a refund or replacement.

The FDA continues to monitor the recall and has not provided additional details about how the contamination occurred. Consumers are encouraged to review any distilled water they have on hand and follow recall guidance to avoid potential exposure.

CLICK HERE FOR MORE INFORMATION

https://people.com/over-38-000-gallons-of-water-have-been-recalled-due-to-foreign-black-substance-contamination-11885997?

In a warming world, freshwater production is moving deep beneath the sea

By  ANNIKA HAMMERSCHLAGUpdated 9:07 AM EST, January 15, 2026

CARLSBAD, Calif. (AP) — Some four miles off the Southern California coast, a company is betting it can solve one of desalination’s biggest problems by moving the technology deep below the ocean’s surface.

OceanWell’s planned Water Farm 1 would use natural ocean pressure to power reverse osmosis — a process that forces seawater through membranes to filter out salt and impurities — and produce up to 60 million gallons (nearly 225 million liters) of freshwater daily. Desalination is energy intensive, with plants worldwide producing between 500 and 850 million tons of carbon emissions annually — approaching the roughly 880 million tons emitted by the entire global aviation industry.

OceanWell claims its deep sea approach — 1,300 feet (400 meters) below the water’s surface — would cut energy use by about 40% compared to conventional plants while also tackling the other major environmental problems plaguing traditional desalination: the highly concentrated brine discharged back into the ocean, where it can harm seafloor habitatsincluding coral reefs, and the intake systems that trap and kill fish larvae, plankton and other organisms at the base of the marine food web.

“The freshwater future of the world is going to come from the ocean,” said OceanWell CEO Robert Bergstrom. “And we’re not going to ask the ocean to pay for it.”

Jaden Gilliam, OceanWell project engineer, left, and Mark Golay, director of engineering projects, lower a prototype reverse osmosis pod into Las Virgenes Reservoir in Westlake Village, Calif., Monday, Dec. 1, 2025. (AP Photo/Annika Hammerschlag)
Jaden Gilliam, OceanWell project engineer, left, and Mark Golay, director of engineering projects, lower a prototype reverse osmosis pod into Las Virgenes Reservoir in Westlake Village, Calif., Monday, Dec. 1, 2025. (AP Photo/Annika Hammerschlag)
A prototype OceanWell reverse osmosis pod is lowered into Las Virgenes Reservoir in Westlake Village, Calif., Monday, Dec. 1, 2025, where the deep sea desalination technology is being tested. (AP Photo/Annika Hammerschlag)
A prototype OceanWell reverse osmosis pod is lowered into Las Virgenes Reservoir in Westlake Village, Calif., Monday, Dec. 1, 2025, where the deep sea desalination technology is being tested. (AP Photo/Annika Hammerschlag)
This photo shows the intake screen of OceanWell's prototype reverse osmosis pod that is designed to allow microscopic organisms such as plankton to safely pass through in Westlake Village, Calif., Monday, Dec. 1, 2025. (AP Photo/Annika Hammerschlag)
This photo shows the intake screen of OceanWell’s prototype reverse osmosis pod that is designed to allow microscopic organisms such as plankton to safely pass through in Westlake Village, Calif., Monday, Dec. 1, 2025. (AP Photo/Annika Hammerschlag)
A prototype OceanWell reverse osmosis pod sits on the dock at the Las Virgenes Reservoir in Westlake Village, Calif., Monday, Dec. 1, 2025, where the deep sea desalination technology is being tested. (AP Photo/Annika Hammerschlag)
A prototype OceanWell reverse osmosis pod sits on the dock at the Las Virgenes Reservoir in Westlake Village, Calif., Monday, Dec. 1, 2025, where the deep sea desalination technology is being tested. (AP Photo/Annika Hammerschlag)

It’s an ambitious promise at a time when the world desperately needs alternatives. As climate change intensifies droughts, disrupts rainfall patterns and fuels wildfires, more regions are turning to the sea for drinking water. For many countries, particularly in the arid Middle East, parts of Africa and Pacific island nations, desalination isn’t optional — there simply isn’t enough freshwater to meet demand. More than 20,000 plants now operate worldwide, and the industry has been expanding at about 7% annually since 2010.

“With aridity and climate change issues increasing, desalination will become more and more prevalent as a key technology globally,” said Peiying Hong, a professor of environmental science and engineering at King Abdullah University of Science and Technology in Saudi Arabia.

But scientists warn that as desalination scales, the cumulative damage to coastal ecosystems — many already under pressure from warming waters and pollution — could intensify.

As climate change is driving a global boom in desalination, new technologies like deep-sea desalination offer a more sustainable approach. (AP Video by Annika Hammerschlag. Produced by Julián Trejo Bax)

A search for solutions

Some companies are powering plants with renewable energy, while others are developing more efficient membrane technology to reduce energy consumption. Still others are moving the technology underwater entirely. Norway-based Flocean and Netherlands-based Waterise have tested subsea desalination systems and are working toward commercial deployment. Beyond southern California, OceanWell has signed an agreement to test its system in Nice, France — another region facing intensifying droughts and wildfires — beginning this year.

For now, its technology remains in development. A single prototype operates in the Las Virgenes Reservoir where the local water district has partnered with the company in hopes of diversifying its water supply. If successful, the reverse osmosis pods would eventually float above the sea floor in the Santa Monica Bay, anchored with minimal concrete footprint, while an underwater pipeline would transport freshwater to shore. The system would use screens designed to keep out even microscopic plankton and would produce less concentrated brine discharge.

The remains of fire-damaged homes sit in a cleared-out block in the Palisades neighborhood of Los Angeles, Calif., Monday, Dec. 1, 2025. (AP Photo/Annika Hammerschlag)
The remains of fire-damaged homes sit in a cleared-out block in the Palisades neighborhood of Los Angeles, Calif., Monday, Dec. 1, 2025. (AP Photo/Annika Hammerschlag)

Gregory Pierce, director of UCLA’s Water Resources Group, said deep sea desalination appears promising from an environmental and technical standpoint, but the real test will be cost.

“It’s almost always much higher than you project” with new technologies, he said. “So that, I think, will be the make or break for the technology.”

Las Virgenes Reservoir serves about 70,000 residents in western Los Angeles County. Nearly all the water originates in the northern Sierra Nevada and is pumped some 400 miles (640 kilometers) over the Tehachapi Mountains — a journey that requires massive amounts of energy. During years of low rainfall and snowpack in the Sierra, the reservoir and communities it serves suffer.

California’s desalination dilemma

About 100 miles (160 kilometers) down the coast, the Carlsbad Desalination Plant has become a focal point in the state’s debate over desalination’s environmental tradeoffs.

The plant came online in 2015 as the largest seawater desalination facility in North America. Capable of producing up to 54 million gallons (204 million liters) of drinking water daily, it supplies about 10% of San Diego County’s water — enough for roughly 400,000 households.

In Southern California, intensifying droughts and wildfires have exposed the region’s precarious water supply. Agricultural expansion and population growth have depleted local groundwater reserves, leaving cities dependent on imported water. San Diego imports roughly 90% of its supply from the Colorado River and Northern California — sources that are becoming increasingly strained by climate change. Desalination was pitched as a solution: a local, drought-proof source of drinking water drawn from the Pacific Ocean.

But environmental groups have argued the plant’s seawater intake and brine discharge pose risks to marine life, while its high energy demands drive up water bills and worsen climate change. Before the plant came online, environmental organizations filed more than a dozen legal challenges and regulatory disputes. Most were dismissed but some resulted in changes to the project’s design and permits.

“It sucks in a tremendous amount of water, and with that, sea life,” said Patrick McDonough, a senior attorney with San Diego Coastkeeper, which has participated in multiple legal challenges to the project. “We’re not just talking fish, turtles, birds, but larvae and spores — entire ecosystems.”

A sectioned-off area of the Agua Hedionda Lagoon marks the seawater intake for the Carlsbad desalination plant in Carlsbad, Calif., Tuesday, Dec. 2, 2025. (AP Photo/Annika Hammerschlag)
A sectioned-off area of the Agua Hedionda Lagoon marks the seawater intake for the Carlsbad desalination plant in Carlsbad, Calif., Tuesday, Dec. 2, 2025. (AP Photo/Annika Hammerschlag)

2009 Regional Water Quality Control Board order estimated the plant would entrap some 10 pounds (4.5 kilograms) of fish daily and required offsetting those impacts by restoring wetlands elsewhere. Seventeen years later, that restoration remains incomplete. And a 2019 study found the plant’s brine discharge raises offshore salinity above permitted levels, though it detected no significant biological changes — likely because the site had already been heavily altered by decades of industrial activity from a neighboring power plant.

Those impacts are especially acute in California, where roughly 95% of coastal wetlands have been lost largely to development, leaving the remaining lagoons as vital habitats for fish and migratory birds.

“When we start messing with these very critical and unfortunately sparse coastal lagoons and wetlands, it can have tremendous impacts in the ocean,” McDonough said.

Michelle Peters, chief executive officer of Channelside Water Resources, which owns the plant, said the facility uses large organism exclusion devices and one-millimeter screens to minimize marine life uptake, though she acknowledged some smaller species can still pass through.

A drone view shows the Carlsbad desalination plant's intake lagoon on the right and the discharge canal on the left, Tuesday, Dec. 2, 2025, in Carlsbad, Calif. (AP Photo/Annika Hammerschlag)
A drone view shows the Carlsbad desalination plant’s intake lagoon on the right and the discharge canal on the left, Tuesday, Dec. 2, 2025, in Carlsbad, Calif. (AP Photo/Annika Hammerschlag)
Pipes carrying brine and other substances run through the Carlsbad desalination plant in Carlsbad, Calif., Tuesday, Dec. 2, 2025. (AP Photo/Annika Hammerschlag)
Pipes carrying brine and other substances run through the Carlsbad desalination plant in Carlsbad, Calif., Tuesday, Dec. 2, 2025. (AP Photo/Annika Hammerschlag)
Pipes carrying brackish feed water run through the Carlsbad desalination plant in Carlsbad, Calif., Tuesday, Dec. 2, 2025. (AP Photo/Annika Hammerschlag)
Pipes carrying brackish feed water run through the Carlsbad desalination plant in Carlsbad, Calif., Tuesday, Dec. 2, 2025. (AP Photo/Annika Hammerschlag)
Reverse osmosis machinery operates at the Carlsbad desalination plant in Carlsbad, Calif., Tuesday, Dec. 2, 2025. (AP Photo/Annika Hammerschlag)
Reverse osmosis machinery operates at the Carlsbad desalination plant in Carlsbad, Calif., Tuesday, Dec. 2, 2025. (AP Photo/Annika Hammerschlag)

The plant dilutes its brine discharge with additional seawater before releasing it back into the ocean, and years of monitoring have shown no measurable impacts to surrounding marine life, she said.

Peters said the Carlsbad plant has significantly cut its energy consumption through efficiency improvements and operates under a plan aimed at making the facility carbon net-neutral.

Many experts say water recycling and conservation should come first, noting wastewater purification typically uses far less energy than seawater desalination and can substantially reduce impacts on marine life. Las Virgenes is pursuing a wastewater reuse project alongside its desalination partnership.

“What we are looking for is a water supply that we can count on when Mother Nature does not deliver,” Las Virgenes’ Pedersen said. “Developing new sources of local water is really a critical measure to be more drought and climate ready.”

A sea lion basks in the sun in La Jolla, Calif., Wednesday, Dec. 3, 2025. (AP Photo/Annika Hammerschlag)
A sea lion basks in the sun in La Jolla, Calif., Wednesday, Dec. 3, 2025. (AP Photo/Annika Hammerschlag)

___

Follow Annika Hammerschlag on Instagram @ahammergram.

___

The Associated Press receives support from the Walton Family Foundation for coverage of water and environmental policy. The AP is solely responsible for all content. For all of AP’s environmental coverage, visit https://apnews.com/hub/climate-and-environment

ANNIKA HAMMERSCHLAG

CLICK HERE FOR MORE INFORMATION

https://apnews.com/article/climate-solutions-desalination-oceans-drinking-water-faba2579f83df4c0688a3ea5e20ab3a6