Cooperation rewards water utilities

Supercomputer simulates water supply in inter-utility agreement study

Mark Twain is attributed with the quote, “Whisky is for drinking, and water is for fighting over!” But what if cooperation yielded more benefit than just going it alone, when it comes to urban water utilities?

A new study of water supply in the North Carolina Research Triangle found that agreements between water utilities can help mitigate their risks.

The research used supercomputer allocations on the Stampede2 system of the Texas Advanced Computing Center awarded by the Extreme Science and Engineering Discovery Environment (XSEDE), which is funded by the National Science Foundation.

The findings are generalizable to any place where water providers allocate regional water resources among users that face challenges in supply and demand and in affordably financing infrastructure improvements.

“We found that cooperation amongst utilities could be beneficial to both their water supply and financial needs compared to more traditional independent planning and management,” said David Gorelick, a postdoctoral research associate at the University of North Carolina, Chapel Hill. Gorelick is with the Center on Financial Risk in Environmental Systems, Department of Environmental Sciences and Engineering, Gillings School of Global Public Health.

The study was published March 2022 in Water Resources Research, a journal of the American Geophysical Union.

The authors started with a computational model they developed together with regional utilities in North Carolina.

“Their participation gives us a lot of confidence that our results will be used at least to inform their behavior and to help avoid some more significant pitfalls when it comes to making big, long term, hundred-million-dollar financial decisions concerning water infrastructure such as new reservoirs or wastewater treatment plants,” Gorelick said.

The model accurately simulates their risk management and long-term infrastructure planning decisions out until 2060.

“This work is not possible without XSEDE supercomputing resources,” said study co-author David Gold, a PhD candidate in the Department of Civil and Environmental Engineering at Cornell University.

Gold and colleagues evaluated the water supply system of the North Carolina Research Triangle of about two million residents, bounded by Chapel Hill, Durham, and Raleigh, over millions of future states out to 2060. This allowed discovery of water management strategies that are robust to a broad set of future conditions.

“Without supercomputing capabilities, we’re flying blind in terms of how the water supply system reacts to different types of uncertainties, whether it’s population growth or changing climate,” Gold said.

“It’s been expansive for us to be able to use Stampede2,” Gold added. “If we were to try to run these simulations on our desktop, it would take us over 15 years to do all the simulations that we ran using Stampede2 over just the course of a few hours.”

A utility-scale computational model of the region was thus developed, using the WaterPaths stochastic simulation software, a utility planning and management tool. The risk-of-failure was evolved based on reservoir capacity dynamics that change on hydroclimatic conditions, human demands, and management decisions that combine weekly portfolio management with long-term annual infrastructure investments.

Some of the risks of inter-utility agreements include exposure to asymmetric partner growth or the inflexibility of the agreement structure itself to respond to the ups and downs of supply and demand.

Interestingly, the authors hypothesized that more flexible agreements might benefit partners more by allowing them to adapt to changing conditions.

“In fact, we found that utilities experienced more financial risk in these cases,” Gorelick said. The study found that with less flexible agreements, utilities are limited to mitigating their own risks. But when agreements can be updated over time, each utility is more exposed to the risks and the uncertainties of their partners.

“We found that cooperation is a good thing. But the type and the manner in which cooperation occurs can be very important for water utilities, and thus the water rates that all of us pay to get our water bills,” Gorelick said.

A simple example of an agreement studied in the paper was a fixed allocation agreement, such as that for a new reservoir or wastewater treatment plant. Because municipalities and local governments in the U.S. can enact inter-local agreements, utilities can partner together and be allocated fixed allocations of storage or treatment capacity in a shared project at the outset.

If one utility, for instance, pays for 20% of the development of that plant, they are allowed to use 20% of its capacity.

“Why these sorts of agreements matter, and why we wanted to test at least a couple in this study is that the agreements are widespread and very customizable from place to place,” Gorelick said.

Thus far, there have been very few research efforts to assess their performance in terms of utility supply and financial objects.

Said Gold: “Today, our water systems face greater challenges than ever. But, we also have tools that we’ve never had before, in terms of supercomputers. By using resources, such as those available at XSEDE, we are able to level the playing field a bit. When we think about the challenges and uncertainties coming from population growth and changing climate, these computer resources allow us insight into the potential effects of these changes and the support to develop sustainable management strategies that can keep our water supply reliable for years to come.”


Story Source:

Materials provided by University of Texas at Austin, Texas Advanced Computing Center. Original written by Jorge Salazar. Note: Content may be edited for style and length.


Journal Reference:

  1. David E. Gorelick, David F. Gold, Patrick M. Reed, Gregory W. Characklis. Impact of Inter‐Utility Agreements on Cooperative Regional Water Infrastructure Investment and Management PathwaysWater Resources Research, 2022; 58 (3) DOI: 10.1029/2021WR030700

How does forest restoration affect water cycles?

Impacts of large-scale afforestation on precipitation reach far beyond country or even continent level

How would afforestation and restoration of large areas worldwide affect water-fluxes world wide? A new study led by Wageningen University researcher Anne Hoek van Dijke with contributions from Martin Herold, GFZ, has interesting answers. Impacts on precipitation reach far beyond country or even continent level: tree restoration in the Amazon can, for example, affect rainfall in Europe and Eastern Asia. The study, published in Nature Geoscience on May 11, 2022, has calculated the global impact of large-scale tree restoration on water fluxes and water availability.

“Restauration and planting more trees is seen as viable solution for enhancing carbon storage and the biodiverse functioning of ecosystems. With innovative data and analysis, our interdisciplinary analysis highlights that the hydrological effects are important for how and where such nature-based solutions are more suitable to achieve towards more climate-smart and sustainable future landscapes,” says Martin Herold from the GFZ German Research Centre for Geosciences, who contributed to the study led by Anne Hoek van Dijke from Wageningen University & Research.

The researchers calculated the hydrological effects of the “global tree restoration potential”: a global map highlighting 900 million hectares where more trees could grow or be planted given local climate conditions, and without encroaching on agricultural and urban land. The increase in evaporation resulting from the increased tree cover was calculated globally at high resolution. The study used data-driven models that describe how much rainfall evaporates, and how much goes to streamflow. Anne Hoek van Dijke, PhD candidate Hydrology and Remote Sensing at Wageningen University & Research: “These models include a vegetation parameter for forest and non-forest conditions that was calibrated to a range of different evaporation and streamflow measurements. Afterwards, we calculated where, and to what extent, the increased evaporation would return to the land surface as increased precipitation.”

Local and global shifts in water availability

The results show that large-scale tree restoration can locally increase evaporation annually by nearly 10 litres on average for every square meter of restored forest. Locally, in the tropics particularly, this effect can be much larger, with almost 250 litres for every square meter. Crucially, not all of this water returns to the land surface. Only around 70% of the extra water in the atmosphere returns to the land, while the remaining 30% is shed over the oceans through rain. On a global scale, this means that tree restoration results in a net decrease in water availability.

For individual river basins, the impact of tree restoration is more complex. Following tree restoration, streamflow for major river basins would generally decrease (by up to around 10%). But for other river basins (e.g. the Yangtze and Amazon river), streamflow reduction will be close to zero because the negative impact of enhanced evaporation is compensated by increased rainfall due to forests in these areas. Interestingly, some of these basins possibly will even gain water.

The study presents the results under current climate conditions. Under a warmer climate, the tree restoration potential would decrease. Also, future climate change could increase evaporation and annual precipitation, which will affect global atmospheric circulation patterns.


Story Source:

Materials provided by GFZ GeoForschungsZentrum Potsdam, Helmholtz CentreNote: Content may be edited for style and length.


Journal Reference:

  1. Anne J. Hoek van Dijke, Martin Herold, Kaniska Mallick, Imme Benedict, Miriam Machwitz, Martin Schlerf, Agnes Pranindita, Jolanda J. E. Theeuwen, Jean-François Bastin, Adriaan J. Teuling. Shifts in regional water availability due to global tree restorationNature Geoscience, 2022; 15 (5): 363 DOI: 10.1038/s41561-022-00935-0

Cite This Page:

GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre. “How does forest restoration affect water cycles? Impacts of large-scale afforestation on precipitation reach far beyond country or even continent level.” ScienceDaily. ScienceDaily, 11 May 2022. <www.sciencedaily.com/releases/2022/05/220511123516.htm>.

FOR MORE INFORMATION: https://www.sciencedaily.com/releases/2022/05/220511123516.htm

Decline of diatoms due to ocean acidification

Study shows unexpected negative impact by CO2 on important plankton group

Coral bleaching due to Ocean Acidification.

Diatoms are the most important producers of plant biomass in the ocean and help to transport carbon dioxide (CO2) from the atmosphere into the deep ocean and thus regulate our climate. Because diatoms rely on silica rather than calcium carbonate to build their shells, they were previously thought to benefit from ocean acidification — a chemical change in seawater triggered by the increasing uptake of CO2 that makes calcification more difficult. In a study published today in Nature, scientists at GEOMAR Helmholtz Centre for Ocean Research Kiel show that diatoms, which are a type of plankton, are also affected. Analyses of data from field experiments and model simulations suggest that ocean acidification could drastically reduce diatom populations.

While calcifying organisms like oysters and corals have difficulty forming their shells and skeletons in more acidic seawater, diatoms have been considered less susceptible to the effects of ocean acidification — a chemical change triggered by the uptake of carbon dioxide (CO2). The globally widespread tiny diatoms use silica, a compound of silicon, oxygen and hydrogen, as a building material for their shells. That diatoms are nevertheless under threat has now been demonstrated for the first time by researchers from GEOMAR Helmholtz Centre for Ocean Research Kiel, the Institute of Geological and Nuclear Sciences Limited New Zealand and the University of Tasmania in a study published in Nature. For the study, researchers linked an overarching analysis of various data sources with Earth system modeling. The findings provide a new assessment of the global impact of ocean acidification.

As a result of ocean acidification, the silicon shells of diatoms dissolve more slowly. This is not an advantage — it causes diatoms to sink into deeper water layers, before they chemically dissolve and are converted back into silica. Consequently, this nutrient is more efficiently exported to the deep ocean and thus becomes scarcer in the light-flooded surface layer, where it is needed to form new shells. This causes a decline in diatoms, according to the scientists in their recent publication. Diatoms contribute 40 percent of the production of plant biomass in the ocean and are the basis of many marine food webs. They are also the main driver of the biological carbon pump that transports CO2 into the deep ocean for long-term storage.

Dr. Jan Taucher, marine biologist at GEOMAR and first author of the study says: “With an overarching analysis of field experiments and observational data, we wanted to find out how ocean acidification affects diatoms on a global scale. Our current understanding of ecological effects of ocean change is largely based on small-scale experiments, that is, from a particular place at a particular time. These findings can be deceptive if the complexity of the Earth system is not taken into account. Our study uses diatoms as an example to show how small-scale effects can lead to ocean-wide changes with unforeseen and far-reaching consequences for marine ecosystems and matter cycles. Since diatoms are one of the most important plankton groups in the ocean, their decline could lead to a significant shift in the marine food web or even a change for the ocean as a carbon sink.”

The meta-analysis examined data from five mesocosm studies from 2010 to 2014, from different ocean regions ranging from Arctic to subtropical waters. Mesocosms are a type of large-volume, oversized test tube in the ocean with a capacity of tens of thousands of liters, in which changes in environmental conditions can be studied in a closed but otherwise natural ecosystem. For this purpose, the water enclosed in the mesocosms was enriched in carbon dioxide to correspond to future scenarios with moderate to high increases in atmospheric CO2 levels. For the present study, the chemical composition of organic material from sediment traps was evaluated as it sank through the water contained in the experimental containers over the course of several weeks of experiments. Combined with measurements from the water column, an accurate picture of biogeochemical processes within the ecosystem emerged.

The findings obtained from the mesocosm studies could be confirmed using global observational data from the open ocean. They show — in line with the results of the meta-analysis — a lower dissolution of the silicon shells at higher seawater acidity. With the resulting data sets, simulations were performed in an Earth system model to assess the ocean-wide consequences of the observed trends.

“Already by the end of this century, we expect a loss of up to ten percent of diatoms. That’s immense when you consider how important they are to life in the ocean and to the climate system,” Dr. Taucher continued. “However, it is important to think beyond 2100. Climate change will not stop abruptly, and global effects in particular take some time to become clearly visible. Depending on the amount of emissions, our model in the study predicts a loss of up to 27 percent silica in surface waters and an ocean-wide decline in diatoms of up to 26 percent by the year 2200 — more than a quarter of the current population.”

This finding of the study is in sharp contrast to the previous state of ocean research, which sees calcifying organisms as losers and diatoms being less affected by ocean acidification. Professor Ulf Riebesell, marine biologist at GEOMAR and head of the mesocosm experiments adds: “This study once again highlights the complexity of the Earth system and the associated difficulty in predicting the consequences of human-made climate change in its entirety. Surprises of this kind remind us again and again of the incalculable risks we run if we do not counteract climate change swiftly and decisively.”


Story Source:

Materials provided by Helmholtz Centre for Ocean Research Kiel (GEOMAR)Note: Content may be edited for style and length.


Journal Reference:

  1. Jan Taucher, Lennart T. Bach, A. E. Friederike Prowe, Tim Boxhammer, Karin Kvale, Ulf Riebesell. Enhanced silica export in a future ocean triggers global diatom declineNature, 2022; 605 (7911): 696 DOI: 10.1038/s41586-022-04687-0

FOR MORE INFORMATION: https://www.sciencedaily.com/releases/2022/05/220525182619.htm

Microbes can degrade the toughest PFAS

Engineers at UC Riverside are the first to report selective breakdown of a particularly stubborn class of PFAS called fluorinated carboxylic acids (FCAs) by common microorganisms.

Under anaerobic conditions, a carbon-carbon double bond is crucial for the shattering the ultra-strong carbon-fluorine bond by microbial communities. While breaking the carbon-carbon bond does not completely degrade the molecule, the resulting products could be relayed to other microorganisms for defluorination under in aerobic conditions.

The achievement builds upon prior work by the same researchers, who were the first to report successful microbial defluorination of a fully fluorinated PFAS structure by replacing carbon-fluorine bonds with carbon-hydrogen bonds.

Per- and polyfluoroalkyl substances, or PFAS, are a group of over 9,000 chemicals used in countless industrial processes and commercial products since the 1940s. As a result, PFAS have found their way into the water cycle and are now found in virtually every water source. These chemicals contain a bond between fluorine and carbon atoms that is the strongest single bond known, rendering PFAS non-biodegradable and resistant to conventional water treatment methods. They wind up in the tissues of organisms, including humans, where they have been associated with some types of cancer, thyroid and liver problems, and likely other, still poorly understood, health problems.

In an earlier paper, Yujie Men, an assistant professor of chemical and environmental engineering, and her colleagues reported using anaerobic microbial communities often used for dechlorination to degrade two specific PFAS, including one fully fluorinated, or perfluorinated, structure.

The new paper takes this research a step further by showing that the point of entry for the anaerobic microbes was a double bond between carbon atoms located next to the carboxyl group of the FCA molecules. Trifluoromethyl branches on the double bond could further enhance the biodegradability.

Microbes capable of doing this type of defluorination are not rare. Using activated sludge — microbial communities commonly used in wastewater treatment facilities to break down and remove organic matter — and an anaerobic condition, the researchers successfully repeated their earlier experiment with more structurally similar PFAS.

“Currently biocatalysts that can do defluorination of perfluorinated compounds like PFOA are very rare. We still know very little about which microbes or enzymes can do the defluorination of PFAS in general and how,” said Men. “Our work is at the leading edge of finding this information.”

Even when scientists figure out ways to break the initial carbon-fluorine bond in perfluorinated compounds, their work isn’t done because the molecules are likely broken down into other molecules that could also be harmful. Successful remediation of PFAS-contaminated environments requires initial breakdown of the PFAS parent molecule followed by complete degradation of the secondary molecules.

One recent study by the Men group demonstrated that activated sludge communities were able to completely degrade the secondary molecule from chemical degradation of one type of perfluorinated chemical via a process known as cometabolism. Their new study further implies that simply through the cooperation among different microbial groups, such as anaerobic and aerobic bacteria, deeper defluorination could also be achieved for certain perfluorinated chemicals.


Story Source:

Materials provided by University of California – Riverside. Original written by Holly Ober. Note: Content may be edited for style and length.


Journal Reference:

  1. Yaochun Yu, Shun Che, Changxu Ren, Bosen Jin, Zhenyu Tian, Jinyong Liu, Yujie Men. Microbial Defluorination of Unsaturated Per- and Polyfluorinated Carboxylic Acids under Anaerobic and Aerobic Conditions: A Structure Specificity StudyEnvironmental Science & Technology, 2022; 56 (8): 4894 DOI: 10.1021/acs.est.1c05509

FOR MORE INFORMATION: https://www.sciencedaily.com/releases/2022/05/220523162819.htm

Low-cost gel film can pluck drinking water from desert air

More than a third of the world’s population lives in drylands, areas that experience significant water shortages. Scientists and engineers at The University of Texas at Austin have developed a solution that could help people in these areas access clean drinking water.

The team developed a low-cost gel film made of abundant materials that can pull water from the air in even the driest climates. The materials that facilitate this reaction cost a mere $2 per kilogram, and a single kilogram can produce more than 6 liters of water per day in areas with less than 15% relative humidity and 13 liters in areas with up to 30% relative humidity.

The research builds on previous breakthroughs from the team, including the ability to pull water out of the atmosphere and the application of that technology to create self-watering soil. However, these technologies were designed for relatively high-humidity environments.

“This new work is about practical solutions that people can use to get water in the hottest, driest places on Earth,” said Guihua Yu, professor of materials science and mechanical engineering in the Cockrell School of Engineering’s Walker Department of Mechanical Engineering. “This could allow millions of people without consistent access to drinking water to have simple, water generating devices at home that they can easily operate.”

The new paper appears in Nature Communications.

The researchers used renewable cellulose and a common kitchen ingredient, konjac gum, as a main hydrophilic (attracted to water) skeleton. The open-pore structure of gum speeds the moisture-capturing process. Another designed component, thermo-responsive cellulose with hydrophobic (resistant to water) interaction when heated, helps release the collected water immediately so that overall energy input to produce water is minimized.

Other attempts at pulling water from desert air are typically energy-intensive and do not produce much. And although 6 liters does not sound like much, the researchers say that creating thicker films or absorbent beds or arrays with optimization could drastically increase the amount of water they yield.

The reaction itself is a simple one, the researchers said, which reduces the challenges of scaling it up and achieving mass usage.

“This is not something you need an advanced degree to use,” said Youhong “Nancy” Guo, the lead author on the paper and a former doctoral student in Yu’s lab, now a postdoctoral researcher at the Massachusetts Institute of Technology. “It’s straightforward enough that anyone can make it at home if they have the materials.”

The film is flexible and can be molded into a variety of shapes and sizes, depending on the need of the user. Making the film requires only the gel precursor, which includes all the relevant ingredients poured into a mold.

“The gel takes 2 minutes to set simply. Then, it just needs to be freeze-dried, and it can be peeled off the mold and used immediately after that,” said Weixin Guan, a doctoral student on Yu’s team and a lead researcher of the work.

The research was funded by the U.S. Department of Defense’s Defense Advanced Research Projects Agency (DARPA), and drinking water for soldiers in arid climates is a big part of the project. However, the researchers also envision this as something that people could someday buy at a hardware store and use in their homes because of the simplicity.

Yu directed the project. Guo and Guan co-led experimental efforts on synthesis, characterization of the samples and device demonstration. Other team members are Chuxin Lei, Hengyi Lu and Wen Shi.


Story Source:

Materials provided by University of Texas at AustinNote: Content may be edited for style and length.


Related Multimedia:


Journal Reference:

  1. Youhong Guo, Weixin Guan, Chuxin Lei, Hengyi Lu, Wen Shi, Guihua Yu. Scalable super hygroscopic polymer films for sustainable moisture harvesting in arid environmentsNature Communications, 2022; 13 (1) DOI: 10.1038/s41467-022-30505-2

FOR MORE INFORMATION: https://www.sciencedaily.com/releases/2022/05/220523162813.htm

Warner Unified Under Boil Water Order After E. Coli Detected in Drinking Water

A Boil Water Order has been issued for the Warner Unified School District after drinking water tested positive for E. Coli, according to the San Diego County’s Department of Environmental Health and Quality (DEHQ).

The order will stay in effect until laboratory tests determine the water is free of bacteria. The presence of E. Coli bacteria indicates the drinking water may be contaminated with human or animal waste, the DEHQ said.

Warner Unified serves around 150 K-12 students and staff every day.

Only the main campus at 30951 state Route 79 is under the boil order. Drinking water at the resource center and sports fields across the highway is safe, according to the DEHQ.

Questions should be forwarded to Andrea Sisson, Business Manager at Warner Unified School District – (760) 782-3517.

FOR MORE INFORMATION: https://www.nbcsandiego.com/news/local/warner-unified-under-boil-water-order-after-e-coli-detected-in-drinking-water/2953734/

Heavy metal pollution can increase antibiotic resistance in rivers

Scientists have shown that elevated heavy metal levels in rivers can lead to higher levels of antibiotic resistance.

Research by Newcastle University and the Indian Institute of Technology, Delhi quantified antibiotic and metal resistance in sediments from the Ganges and Yamuna Rivers in India and streams in the River Tyne catchment. The results show heavy metals, which are high in the River Tyne catchment due to historic mining and industrial activity, relate to antibiotic resistance levels in the river. The same was seen in the Indian rivers, especially in areas of industrial activity.

Publishing their findings in the journal Environmental Pollution, the team investigated the relationships between heavy metals concentrations, metal resistance gene (MRG) and antibiotic resistance gene (ARG) abundances. The study shows that MRG and ARG abundances increase where metal levels are higher, suggesting reaches with metal pollution have increased antibiotic resistance, even when elevated antibiotics are not evident.

The results show that metal pollution also affects resident bacteria, with Firmicutes and Bacteroidota being the most abundant phyla at sites with high metal pollution. These bacteria are common in metal contaminated environments and are known to carry MRGs and ARGs in groups in “gene cassettes,” which explains why metal exposures can cause antibiotic resistance.

The study shows that specific metal combinations that promote the strongest bacterial responses are Cobalt plus Nickel, and the combination of Cobalt, Zinc and Cadmium.

Study co-author, Professor David Graham, of Newcastle University’s School of Engineering, said: “The work does not necessarily imply a health risk, but it shows that a river or stream without antibiotics pollution can still have elevated antibiotic resistance due to other pollutants, such as metals. However, in a river like the Yamuna, which has high metals in combination with many other pollutants, greater concerns about the spread of antibiotic resistance exist.”

Study lead author, Dr Sonia Gupta of the Indian Institute of Technology, Delhi, said: “High metal exposure has the potential to co-select for antibiotic resistance in bacteria, making them potentially resistant to multiple antibiotics.”

Dr Gupta also noted: “The impacts of heavy metals-induced antibiotic resistance get exacerbated when high metal levels are combined with other pollutants such as antibiotics, detergents, and other chemicals, highlighting the importance of reducing heavy metal pollution as part of One Health solutions for reducing ARG transmission and spread.”

Antibiotic resistance, also called AMR, is major global public health issue that has implications on the effective treatment of a growing number of infections caused by bacteria, parasites, viruses and fungi. Antibiotic use selects for resistance strains in human and animal wastes, which can be released to the environment via wastewater, spreading ARGs and AMR bacteria across nature.


Story Source:

Materials provided by Newcastle UniversityNote: Content may be edited for style and length.


Journal Reference:

  1. Sonia Gupta, David W. Graham, T.R. Sreekrishnan, Shaikh Ziauddin Ahammad. Effects of heavy metals pollution on the co-selection of metal and antibiotic resistance in urban rivers in UK and IndiaEnvironmental Pollution, 2022; 306: 119326 DOI: 10.1016/j.envpol.2022.119326

FOR MORE INFORMATION: https://www.sciencedaily.com/releases/2022/05/220516124023.htm

Deciphering the biosynthetic gene cluster for potent freshwater toxin

BY2D80 A water quality researcher samples Toxic Blue Green Algae in the Copco Reservoir in Northern California (NRDC).

Scientists from Scripps Institution of Oceanography at the University of California San Diego, the University of São Paulo and UC Santa Cruz collaborated to discover and validate the enzymes responsible for the production ofone of the most toxic and fast-acting neurotoxins associated with freshwater harmful algal blooms in lakes and ponds.

The team combined genetic and biochemical studies to show how freshwater cyanobacteria produce the potent neurotoxin called guanitoxin. This discovery revealed that guanitoxin-producing cyanobacteria are more prevalent than originally known in the United States, opening the possibility for new molecular diagnostic testing to better inform and protect the public from this natural freshwater toxin. Findings were described in a paper published in the Journal of the American Chemical Society on May 18, 2022.

The paper also “shows guanitoxin being produced in freshwater bodies that have undergone past very toxic events,” said study lead author Stella Lima, a former PhD student at the University of São Paulo and visiting scholar at Scripps Oceanography.

Guanitoxin is one of the most potent neurotoxins made by cyanobacteria that actually has a similar mechanism of action to pesticides and chemical warfare agents, said Timothy Fallon, a Scripps postdoctoral scientist in the laboratory of Scripps marine chemical biologist Bradley Moore, where Lima was a visiting scholar.

Harmful algal blooms (HABs) form in lakes and ponds when cyanobacteria, otherwise known as blue-green algae, become abundant. These freshwater HABs produce different cyanotoxins, which can harm nearby animals and people. Depending on the cyanotoxin involved, exposed people exhibit symptoms such as stomach pain, headache, vomiting, liver damage or neurological impairment, according to federal health officials. Over the years, many regions have declared emergencies and issued “do not drink” advisories. Pet and animal deaths have also been reported after the animals came in contact with affected water.

Freshwater HABs can cause myriad social and economic problems for communities and are a problematic public health issue, said Lima. Testing and monitoring for certain cyanotoxins, such as microcystin, cylindrospermopsin, saxitoxin and anatoxin-a, occur because methods are available to do so, but despite the fact that guanitoxin is the second most toxic cyanotoxin, “no one’s looking for it” because the right methods aren’t available for detection and monitoring, Lima added.

As a PhD student in 2016, Lima found a set of genes she suspected was responsible for making guanitoxin by a cyanobacterium isolated from a large freshwater bloom in Brazil. The strain was isolated from the Tapacurá reservoir in Pernambuco, Brazil and has been maintained and cultivated by Marli Fiore, Lima’s former PhD advisor and co-author of the study

After this discovery, Lima looked for a partnership to confirm her suspicion. So, in 2018 she traveled to UC San Diego to work with Moore, who had established the first biochemical studies on guanitoxin back in the early 1990s. The team of scientists worked together to establish the precise functions of all nine enzymes that convert an ordinary amino acid to a neurotoxin, Lima said.

After discovering the genes involved in the production of guanitoxin and carefully validating their functions, researchers searched through thousands of samples from publically available environmental data for the guanitoxin biosynthetic genes.

The researchers were able to detect toxin genes for guanitoxin in environmental hotspots in the United States in populated areas, said Moore, who is a co-corresponding author of the studyThe two areas of concern, where the toxin genes were regularly detected for guanitoxin, were in Lake Erie near Toledo, Ohio and in Lake Mendota, Wisconsin.Other areas of detection include the Amazon River in Brazil, the Columbia River in Oregon and the Delaware River in Delaware.

“We found these genes in lots of different fresh water sources, but nobody has looked for or monitored for this particular toxin environmentally,” said Shaun McKinnie, a chemistry and biochemistry assistant professor at UC Santa Cruz and former postdoctoral scholar in the Moore Lab, who contributed to the study.

“Here’s this neurotoxic potential in these lakes that people use recreationally, but this toxin has gone under the radar until our work,” Fallon said.

Moore said follow-up work should include fieldwork to detect other areas where guanitoxin may be produced.

Cyanobacterial blooms are becoming more and more prevalent in the United States and worldwide, mostly because of climate change and the introduction of fertilizers and other chemicals related to farming into bodies of water.

While HABs can be visible on the surface of freshwater bodies, the federal Environmental Protection Agency (EPA) states “cyanotoxins can be present before and after blooms are visible. Therefore, it is recommended that cyanotoxin levels be confirmed through laboratory testing of the water.”

“Now that we figured out the guanitoxin pathway at the genomic level, we can also give additional pieces of information to say: ‘This is a safe body of water, or this is a less safe body of water; Does this have the ability to become toxic and can we predict toxic events?'” McKinnie said.

The researchers have filed a provisional patent application based on the concept of using the guanitoxin biosynthetic gene sequences they identified in the lab and applying molecular diagnostics using those sequences to find the genes in the environment.

In addition to Lima, Fallon, Moore, Fiore, and McKinnie, other study co-authors include Endrews Delbaje, Ernani Pinto and Felipe Dörr from the University of São Paulo; former Moore Lab scientist Hanna Luhavaya; current Scripps Oceanography PhD student Steffaney Wood; UC Santa Cruz researchers Jennifer Cordoza, Austin Hopiavuori, and Jackson Baumgartner; Jonathon Chekan from University of North Carolina Greensboro; Danillo Alvarenga from the University of Copenhagen; and Augusto Etchegaray from the Pontifical Catholic University of Campinas in Brazil.

The study was funded by the National Institute of Environmental Health Sciences, the Sao Paulo Research Foundation, and the National Council for Scientific and Technological Development. Other funding was from the Simons Foundation Fellowship of the Life Sciences Research Foundation; the Brazilian Federal Agency for the Support Evaluation of Graduate Education; startup funding and a Faculty Research Grant from UC Santa Cruz.


Story Source:

Materials provided by University of California – San DiegoNote: Content may be edited for style and length.


Journal Reference:

  1. Stella T. Lima, Timothy R. Fallon, Jennifer L. Cordoza, Jonathan R. Chekan, Endrews Delbaje, Austin R. Hopiavuori, Danillo O. Alvarenga, Steffaney M. Wood, Hanna Luhavaya, Jackson T. Baumgartner, Felipe A. Dörr, Augusto Etchegaray, Ernani Pinto, Shaun M. K. McKinnie, Marli F. Fiore, Bradley S. Moore. Biosynthesis of Guanitoxin Enables Global Environmental Detection in Freshwater CyanobacteriaJournal of the American Chemical Society, 2022; DOI: 10.1021/jacs.2c01424

FOR MORE INFORMATION: https://www.sciencedaily.com/releases/2022/05/220520144716.htm

Aqua Pennsylvania’s rate hike: The price per flush will go up 50% as early as Thursday

Aqua’s water rates will increase about 10%, and wastewater rates will go up 51% this week. In towns whose sewer systems were recently acquired by Aqua, the impact will be more severe.

A half-million Aqua Pennsylvania water and wastewater customers are about to experience the impact of rising infrastructure costs.

Rates for 440,000 Aqua water customers are set to go up about 10% this week, according to an order posted Monday by the Pennsylvania Public Utility Commission. Rates for Aqua’s 40,000 wastewater customers will go up 51% or more.

The precise impact on Aqua customers is not known because the Bryn Mawr utility, a subsidiary of Essential Utilities Inc., has not yet filed its formal tariff that spells out new charges for various rate zones across Pennsylvania. The new rates could go into effect as early as Thursday. An Aqua spokesperson said Tuesday that the company would file its tariff “later this week.”

Most Aqua residential customer using 4,000 gallons a month currently pay $69.35 for water and $55.51 for wastewater. Most Aqua customers receive only water service.

Read more, at: https://www.inquirer.com/business/aqua-pennsylvania-water-wastewater-rate-increase-puc-20220517.html

Florida conservation groups sue EPA over water pollution killing off manatees, sea turtles

ST. PETERSBURG, Fla. – Conservation groups in Florida sued the U.S. Environmental Protection Agency for not doing enough to keep water pollution from killing off marine life.

Save the Manatee Club, Center for Biological Diversity, and Defenders of Wildlife filed the lawsuit Tuesday, claiming the current water quality played a role in more than 1,000 manatee deaths in 2021. Earthjustice is representing the groups in the lawsuit, which was filed in the Middle District of Florida.

“Most of those coming from the Indian River Lagoon, where these gentle giants are starving to death because nutrient pollution has destroyed their home and their food source,” said Ragan Whitlock, staff attorney for the Center for Biological Diversity in St. Petersburg.

RELATED: $30 million of Florida state budget will be used to help manatees, governor says

The groups claim the EPA’s current water quality standards from 2013 just aren’t enough. According to a release from the groups, the goal of the lawsuit is to push “the court to require EPA to reinitiate consultation with the U.S. Fish and Wildlife Service and National Marine Fisheries Service under the Endangered Species Act to reassess its approval of Florida’s water quality standards for the Indian River Lagoon.”

“We have to change how many nutrients and what the load is that we’re allowed to dump into our bays and our waterways,” said Whitlock.

Read more, at: https://www.fox13news.com/news/florida-conservation-groups-sue-epa-over-water-pollution-killing-off-manatees-sea-turtles