Scientists finally solve the mystery of ghostly halos on the ocean floor

Initially thought to contain the pesticide DDT, study reveals some barrels contained caustic alkaline waste.

Source:University of California – San Diego

Summary:Barrels dumped off Southern California decades ago have been found leaking alkaline waste, not just DDT, leaving behind eerie white halos and transforming parts of the seafloor into toxic vents. The findings reveal a persistent and little-known legacy of industrial dumping that still shapes marine life today.Share:

    

FULL STORY


Scientists Solve the Mystery of Ghostly Halos
A discarded barrel on the seafloor off the coast of Los Angeles. The image was taken during a survey in July 2021 by remotely operated vehicle SuBastian. Credit: Schmidt Ocean Institute

In 2020, haunting images of corroded metal barrels in the deep ocean off Los Angeles leapt into the public consciousness. Initially linked to the toxic pesticide DDT, some barrels were encircled by ghostly halos in the sediment. It was unclear whether the barrels contained DDT waste, leaving the barrels’ contents and the eerie halos unexplained.

Now, new research from UC San Diego’s Scripps Institution of Oceanography reveals that the barrels with halos contained caustic alkaline waste, which created the halos as it leaked out. Though the study’s findings can’t identify which specific chemicals were present in the barrels, DDT manufacturing did produce alkaline as well as acidic waste. Other major industries in the region such as oil refining also generated significant alkaline waste.

“One of the main waste streams from DDT production was acid and they didn’t put that into barrels,” said Johanna Gutleben, a Scripps postdoctoral scholar and the study’s first author. “It makes you wonder: What was worse than DDT acid waste to deserve being put into barrels?”

The study also found that the caustic waste from these barrels transformed portions of the seafloor into extreme environments mirroring natural hydrothermal vents — complete with specialized bacteria that thrive where most life cannot survive. The study authors said the severity and extent of this alkaline waste’s impacts on the marine environment depend on how many of these barrels are sitting on the seafloor and the specific chemicals they contained.

Despite these unknowns, Paul Jensen, emeritus marine microbiologist at Scripps and senior author of the study, said that he would have expected the alkaline waste to quickly dissipate in seawater. Instead, it has persisted for more than half a century, suggesting this alkaline waste “can now join the ranks of DDT as a persistent pollutant with long-term environmental impacts.”

The study, published on September 9 in the Proceedings of the National Academy of Sciences Nexus and supported by NOAA and the University of Southern California’s Sea Grant program, continues Scripps’ leadership role in unspooling the toxic legacy of once-legal ocean dumping off the coast of Southern California. The findings also provide a way of visually identifying barrels that formerly contained this caustic alkaline waste.

“DDT was not the only thing that was dumped in this part of the ocean and we have only a very fragmented idea of what else was dumped there,” said Gutleben. “We only find what we are looking for and up to this point we have mostly been looking for DDT. Nobody was thinking about alkaline waste before this and we may have to start looking for other things as well.”

From the 1930s until the early 1970s, 14 deep-water dump sites off the coast of Southern California received “refinery wastes, filter cakes and oil drilling wastes, chemical wastes, refuse and garbage, military explosives and radioactive wastes,” according to the EPA. A pair of Scripps-led seafloor surveys in 2021 and 2023 identified thousands of objects, including hundreds of discarded military munitions. The number of barrels on the seafloor remains unknown. Sediments in the area are heavily contaminated with the pesticide DDT, a chemical banned in 1972 now known to harm humans and wildlife. Scant records from this time period suggest DDT waste was largely pumped directly into the ocean.

Gutleben said she and her co-authors didn’t initially set out to solve the halo mystery. In 2021, aboard the Schmidt Ocean Institute’s Research Vessel Falkor, she and other researchers collected sediment samples to better understand the contamination near Catalina. Using the remotely operated vehicle (ROV) SuBastian, the team collected sediment samples at precise distances from five barrels, three of which had white halos.

The barrels featuring white halos presented an unexpected challenge: Inside the white halos the sea floor suddenly became like concrete, preventing the researchers from collecting samples with their coring devices. Using the ROV’s robotic arm, the researchers collected a piece of the hardened sediment from one of the halo barrels.

The team analyzed the sediment samples and the hardened piece of halo barrel crust for DDT concentrations, mineral content and microbial DNA. The sediment samples showed that DDT contamination did not increase closer to the barrels, deepening the mystery of what they contained.

During the analysis, Gutleben struggled to extract microbial DNA from the samples taken through the halos. After some unsuccessful troubleshooting in the lab, Gutleben tested one of these samples’ pH. She was shocked to find that the sample’s pH was extremely high — around 12. All the samples from near the barrels with halos turned out to be similarly alkaline. (An alkaline mixture is also known as a base, meaning it has a pH higher than 7 — as opposed to an acid which has a pH less than 7).

This explained the limited amount of microbial DNA she and her colleagues had been able to extract from the halo samples. The samples turned out to have low bacterial diversity compared to other surrounding sediments and the bacteria came from families adapted to alkaline environments, like deep-sea hydrothermal vents and alkaline hot springs.

Analysis of the hard crust showed that it was mostly made of a mineral called brucite. When the alkaline waste leaked from the barrels, it reacted with magnesium in the seawater to create brucite, which cemented the sediment into a concrete-like crust. The brucite is also slowly dissolving, which maintains the high pH in the sediment around the barrels, and creates a place only few extremophilic microbes can survive. Where this high pH meets the surrounding seawater, it forms calcium carbonate that deposits as a white dust, creating the halos.

“This adds to our understanding of the consequences of the dumping of these barrels,” said Jensen. “It’s shocking that 50-plus years later you’re still seeing these effects. We can’t quantify the environmental impact without knowing how many of these barrels with white halos are out there, but it’s clearly having a localized impact on microbes.”

Prior research led by Lisa Levin, study co-author and emeritus biological oceanographer at Scripps, showed that small animal biodiversity around the barrels with halos was also reduced. Jensen said that roughly a third of the barrels that have been visually observed had halos, but it’s unclear if this ratio holds true for the entire area and it remains unknown just how many barrels are sitting on the seafloor.

The researchers suggest using white halos as indicators of alkaline waste could help rapidly assess the extent of alkaline waste contamination near Catalina. Next, Gutleben and Jensen said they are experimenting with DDT contaminated sediments collected from the dump site to search for microbes capable of breaking down DDT.

The slow microbial breakdown the researchers are now studying may be the only feasible hope for eliminating the DDT dumped decades ago. Jensen said that trying to physically remove the contaminated sediments would, in addition to being a huge logistical challenge, likely do more harm than good.

“The highest concentrations of DDT are buried around 4 or 5 centimeters below the surface — so it’s kind of contained,” said Jensen. “If you tried to suction that up you would create a huge sediment plume and stir that contamination into the water column.”

In addition to Gutleben, Jensen and Levin, Sheila Podell, Douglas Sweeney and Carlos Neira of Scripps Oceanography co-authored the study, alongside Kira Mizell of the U.S. Geological Survey.

CLICK HERE FOR MORE INFORMATION

https://www.sciencedaily.com/releases/2025/09/250910000244.htm

This plastic disappears in the deep sea—and microbes make it happen

An environment-friendly plastic lost over 80% of its mass after 13 months underwater real-time deep-sea conditions.

Summary:A new eco-friendly plastic called LAHB has shown it can biodegrade even in the extreme environment of the deep ocean, unlike conventional plastics that persist for decades. In real-world underwater testing nearly a kilometer below the surface, LAHB lost more than 80% of its mass after 13 months, while traditional PLA plastic remained completely intact. The secret? Colonies of deep-sea microbes actively broke down the material using specialized enzymes, converting it into harmless byproducts like CO and water.

Researchers submerged LAHB films at a depth of 855 m near Hatsushima Island to test real-world deep-sea biodegradation. After 13 months, the LAHB plastic lost over 80% of its mass, showing its potential as a safer alternative to conventional plastics that persist in marine ecosystems. Credit: Japan Agency for Marine-Earth Science and Technology (JAMSTEC)

Researchers have demonstrated a new eco-friendly plastic that decomposes in deep ocean conditions. In a deep-sea experiment, the microbially synthesized poly(d-lactate-co-3-hydroxybutyrate) (LAHB) biodegraded, while conventional plastics such as a representative bio-based polylactide (PLA) persisted. Submerged 855 meters (~2,800 feet) underwater, LAHB films lost over 80% of their mass after 13 months as microbial biofilms actively broke down the material. This real-world test establishes LAHB as a safer biodegradable plastic, supporting global efforts to reduce marine plastic waste.

Despite the growing popularity of bio-based plastics, plastic pollution remains one of the world’s most pressing environmental issues. According to the OECD’s Global Plastics Outlook (2022), about 353 million metric tons of plastic waste were produced globally in 2019, with nearly 1.7 million metric tons flowing directly into aquatic ecosystems. Much of this waste becomes trapped in large rotating ocean currents, known as gyres, forming the infamous “garbage patches” found in the Pacific, Atlantic, and Indian Oceans.

To tackle this, researchers have been searching for plastics that can be degraded more reliably in deep-sea environments. One promising candidate is poly(d-lactate-co-3-hydroxybutyrate) or LAHB, a lactate-based polyester biosynthesized using engineered Escherichia coli. So far, LAHB has shown strong potential as a biodegradable polymer that breaks down in river water and shallow seawater.

Now, in a study made available online on July 1, 2025, and published in Volume 240 of the journal Polymer Degradation and Stability on October 1, 2025, researchers from Japan have shown for the first time that LAHB can also get biodegraded under deep-sea conditions, where low temperatures, high pressure, and too limited nutrients make breakdown of plastic extremely difficult. The study was led by Professor Seiichi Taguchi at the Institute for Aqua Regeneration, Shinshu University, Japan, together with Dr. Shun’ichi Ishii from the Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Japan and Professor Ken-ichi Kasuya from Gunma University Center for Food Science and Wellness, Japan.

“Our study demonstrates for the first time that LAHB, a microbial lactate-based polyester, undergoes active biodegradation and complete mineralization even on the deep-sea floor, where conventional PLA remains completely non-degradable,” explains Prof. Taguchi.

The research team submerged two types of LAHB films — one containing about 6% lactic acid (P6LAHB) and another with 13% lactic acid (P13LAHB) — alongside a conventional PLA film for comparison. The samples were submerged at a depth of 855 meters near Hatsushima Island, where deep-sea conditions, cold temperatures (3.6 °C), high salinity, and low dissolved oxygen levels make it hard for microbes to degrade plastic.

After 7 and 13 months of immersion, the LAHB films revealed clear signs of biodegradation under deep-sea conditions. The P13LAHB film lost 30.9% of its weight after 7 months and over 82% after 13 months. The P6LAHB film showed similar trends. By contrast, the PLA film showed no measurable weight loss or visible degradation during the same period, underscoring its resistance to microbial degradation. The surfaces of the LAHB films had developed cracks and were covered by biofilms made up of oval- and rod-shaped microbes, indicating that deep-sea microorganisms were colonizing and decomposing the LAHB plastic. The PLA film, however, remained completely free of biofilm.

To understand how the plastic decomposes, the researchers analyzed the plastisphere, the microbial community that formed on the plastic’s surface. They found that different microbial groups played distinct roles. Dominant Gammaproteobacterial genera, including ColwelliaPseudoteredinibacterAgarilytica, and UBA7957, produced specialized enzymes known as extracellular poly[3-hydroxybutyrate (3HB)] depolymerases. These enzymes break down long polymer chains into smaller fragments like dimers and trimers. Certain species, such as UBA7959, also produce oligomer hydrolases (like PhaZ2) that further cleave these fragments, splitting 3HB-3HB or 3HB-LA dimers into their monomers.

Once the polymers are broken down into these simpler building blocks, other microbes, including various Alpha-proteobacteria and Desulfobacterota, continue the process by consuming the monomers like 3HB and lactate. Working together, these microbial communities ultimately convert the plastic into carbon dioxide, water, and other harmless compounds that ideally return to the marine ecosystem.

The findings of this study fill a critical gap in our understanding of how bio-based plastics degrade in remote marine environments. Its proven biodegradability makes it a promising option for creating safer, more biodegradable materials.

“This research addresses one of the most critical limitations of current bioplastics — their lack of biodegradability in marine environments. By showing that LAHB can decompose and mineralize even in deep-sea conditions, the study provides a pathway for safer alternatives to conventional plastics and supports the transition to a circular bioeconomy,” says Prof. Taguchi.

CLICK HERE FOR MORE INFORMATION

https://www.sciencedaily.com/releases/2025/07/250724232418.htm