World Annual Fresh Water Losses Could Supply 280 Million People

  • Share more

New report links poor land and water management to accelerating freshwater loss.

The world is losing 324 billion cubic meters of freshwater every year, enough to meet the needs of 280 million people annually, according to the first edition of the Global Water Monitoring Reportreleased today by the World Bank. These losses are driven by worsening droughts and unsustainable land and water practices, including poor pricing policies, weak coordination, deforestation, wetland degradation, and excessive irrigation.

The report, Continental Drying: A Threat to Our Common Future, provides the most detailed picture yet of global freshwater decline, and offers a roadmap for reversing the trend through smarter policy and investment.

“The trend of continental drying is sobering, but the analysis also points to solutions,” said Axel van Trotsenburg, Senior Managing Director, World Bank. “With the right policies and investments, countries can turn the tide by managing water as the precious resource it is. This is smart development — and essential for building a livable planet.”

Drawing on two decades of satellite data enhanced through new modeling techniques, the report provides an unprecedented view of how land and water management decisions are shaping water availability. For the first time, leaders can see where water loss is happening— at national and county levels—and therefore identify where action is most urgently needed.

By combining water availability and agricultural water demand data, the report identifies vulnerability hot spots and priority regions for policy interventions. Global water use has risen 25% since 2000, with a third of that increase in areas already drying out. This includes areas already facing freshwater scarcity such as Central America, a large swath of Eastern Europe, and northern India. However, water stress is also emerging in historically water-abundant regions undergoing rapid agricultural, industrial, and urban growth, such as southeastern Brazil.

The strain on jobs, incomes, and ecosystems is most acute in vulnerable regions. In Sub-Saharan Africa, droughts leave 600,000 to 900,000 people without jobs each year, disproportionately affecting women, older individuals, landless farmers, and low-skilled workers.

The past two decades have seen a global shift toward the cultivation of more water-intensive crops. Among drying countries, 37 have transitioned to more water-intensive agriculture, including 22 located in arid and semi-arid regions. This structural shift, coupled with inefficiency, further intensifies water demand in already water-stressed countries. More than two-thirds of the inefficient irrigation in drying areas is linked to the cultivation of water-intensive crops, such as rice, wheat, cotton, maize, or sugar cane. This underscores the need for smarter crop choices and incentives that align agricultural practices with water sustainability.

Virtual water trade, which can provide a way for water-scarce countries to import water intensive goods like crops and industrial products, can help reduce global water use. Since 2010, virtual water trade has saved 475 billion cubic meters of water each year or almost 10% of total global water consumption. However, the report finds that many water-scarce countries are exporting products that are water intensive, highlighting the need to align trade policies with water sustainability goals.

“Continental drying is not inevitable,” said Fan Zhang, lead author of the Global Water Monitoring Report“By managing demand, expanding supply, and allocating water more fairly and efficiently, countries can stabilize water systems and secure their future. The data show that solutions exist; what’s needed now is coordination, investment, and resolve.”

The report calls for a three-part strategy to address the crisis:

  • Manage water demand more efficiently through technologies, regulations, and public awareness
  • Expand alternative water supply via recycling, desalination, and improved storage
  • Ensure fair and effective water allocation across sectors and regions.

Contact:

World Bank Media Relations: +1 (202) 473 7660, press@worldbank.org

Website: www.worldbank.org/water

Facebook: http://www.facebook.com/worldbank

X (Twitter): http://www.x.com/worldbank

YouTube: http://www.youtube.com/worldbank


PRESS RELEASE NO: 2026/021/PLANET

CLICK HERE FOR MORE INFORMATION

world bank.org

World Bank Group: Africa Water Center – Strengthening Capacity in the Water Sector 

A High-Level Forum on Defying Drought (D2) in West Africa, 29–30 September 2025, brought together senior policymakers, experts and partners in Ouagadougou, Burkina Faso, to advance coordinated solutions to strengthen drought resilience across the Sahel.  

Reporting and monitoring

Convened by the World Bank Group in partnership with the Government of Burkina Faso and the International Institute for Water and Environmental Engineering (2iE), the two-day event focused on scaling up drought-resilience measures across vulnerable regions.  

Climate pressures are intensifying across West Africa. Population growth and declining per capita water resources are straining supply–demand balances, while drought risk is rising alongside floods and heatwaves. Over the past 50 years, extreme drought conditions have increased by more than 230 per cent.  

A key outcome was the signing of a Memorandum of Understanding to establish the Africa Water Center — a regional hub for innovation, knowledge exchange and capacity building to strengthen water planning, early warning and drought management across West Africa.

Explore more here

CLICK HERE FOR MORE INFORMATION

https://www.unwater.org/news/world-bank-group-africa-water-center-strengthening-capacity-water-sector

“Day Zero” Could Hit One Major World City—and More Could Be at Risk

A historic drought in Iran could make its capital city Tehran reach “Day Zero” within two weeks, according to state media. Day Zero is the term signifying when the main source of drinking water runs dry and nothing comes out of faucets. As of November 6, one of the five dams that supplies Tehran was at only eight percent of its capacity, enough for two weeks.

The Siosepol Bridge in Isfahan, Iran. A historic drought across the country could make the city of Tehran reach “Day Zero” within about two weeks, according to the state media. |  Credit: Seiiedali/Creative Commons

Iran’s president, Masoud Pezeshkian, reportedly said that if it doesn’t rain by late November, Tehran, a city of ten million people, will have to ration water.  If there’s no rain after that, they will have to evacuate the city. Mismanagement and overexploitation of water resources as well as climate change are said to be the cause of the shortages.

The possibility of a Day Zero occurring in other parts of the world was the subject of a new study by researchers in South Korea. The authors write that regions along the Mediterranean Sea, parts of North America, and southern Africa could see shortages arriving as early as this or next decade, and they could last longer. Cape Town, South Africa, faced a complete shutdown of its water in 2018, which was avoided by severe restrictions like limiting people to just a few liters a day.

The authors say that solutions must come from policy makers prioritizing smart management and modernizing leaky infrastructure as well as from people using water more responsibly.

The study was published in the journal Nature Communications.

CLICK HERE FOR MORE INFORMATION

https://h2oradio.org/this-week-in-water/a-major-world-city-could-run-out-of-water

Extreme floods are slashing global rice yields faster than expected

Flooding is emerging as a silent but powerful destroyer of global rice supplies—and the danger is accelerating.

Source:Stanford UniversitySummary:Scientists discovered that a week of full submergence is enough to kill most rice plants, making flooding a far greater threat than previously understood. Intensifying extreme rainfall events may amplify these losses unless vulnerable regions adopt more resilient rice varieties.Share:

    

FULL STORY


Rising Floods Threaten the World’s Rice
Severe flooding is increasingly damaging global rice yields, slashing production by millions of tons and threatening food security for billions. Credit: Shutterstock

Intense flooding has significantly reduced rice harvests around the world in recent decades, putting at risk the food supply of billions of people who rely on the grain as a dietary staple. Between 1980 and 2015, annual losses averaged about 4.3%, or roughly 18 million tons of rice each year, according to Stanford University research published November 14 in Science Advances.

The researchers found that the damage has grown worse since 2000 as extreme floods have become more common in many of the planet’s main rice-growing regions. They report that climate change is likely to further increase the frequency and severity of these destructive floods in the coming decades.

Droughts, Floods, and a Delicate Balance for Rice

Scientists and farmers have long known that rice yields fall during droughts. The new study adds fresh detail to this picture, estimating that droughts reduced rice yields by an average of 8.1% per year during the 35-year study window. At the same time, the work draws attention to a related but less examined danger from too much water. Rice plants benefit from shallow standing water during early growth, yet prolonged or deep flooding can severely damage or kill the crop.

“While the scientific community has focused on damage to rice yield due to droughts, the impacts of floods have not received enough attention,” said Steven Gorelick, the study’s senior co-author and a professor of Earth system science in the Stanford Doerr School of Sustainability. “Our research documents not only areas where rice yields have suffered due to past flooding, but also where we can anticipate and prepare for this threat in the future.”

What Counts as a ‘Rice-Killing’ Flood

The research team clearly spells out, for the first time, the conditions that turn a flood into a lethal event for rice, said lead study author Zhi Li, who worked on the project as a postdoctoral fellow in Gorelick’s lab at Stanford and recently joined the faculty of the University of Colorado Boulder.

They found that a full week of complete submergence during the plant’s growth cycle is the critical tipping point. “When crops are fully submerged for at least seven days, most rice plants die,” Li said. “By defining ‘rice-killing floods,’ we were able to quantify for the first time how these specific floods are consistently destroying one of the most important staple foods for more than half of the global population.”

How the Researchers Measured Flood and Drought Damage

To estimate how much past droughts and floods have harmed rice production, the scientists combined several lines of evidence. They drew on information about rice growth stages, annual global rice yields, a worldwide database of droughts and floods dating back to 1950, a model of how floods behave across landscapes, and a simulation of soil moisture levels over time in major rice-growing river basins.

Their analysis indicates that, in the coming decades, the most intense week of rainfall in key rice-growing basins around the world could deliver 13% more rain than the average for those regions during the 1980 to 2015 baseline period. This projected increase suggests that rice-killing flood conditions may become more common as the climate continues to warm.

Flood-Resistant Rice Varieties and High-Risk Regions

Wider use of flood-resistant rice varieties could help reduce future losses, especially in the areas that face the highest risk. The study highlights the Sabarmati Basin in India, which experiences the longest rice-killing floods, along with North Korea, Indonesia, China, the Philippines, and Nepal, where the impact of such floods on rice yields has grown the most in recent decades. The greatest total losses have occurred in North Korea, East China, and India’s West Bengal.

The researchers also identified exceptions, such as India’s Pennar Basin, where flooding appears to boost rice yields. They suggest that in these locations, hot and dry conditions may allow standing floodwater to evaporate quickly, reducing long-term damage and sometimes even creating favorable moisture conditions for the crop.

Compounding Climate Stresses on Rice

For Gorelick and Li, the new findings reinforce the need to understand how rice responds not only to floods and droughts, but also to heat waves and cold stress, both individually and when they occur in succession. Earlier research has shown that rapid swings from drought to flood and back again can nearly double rice yield losses compared with single flood or drought events on their own. According to the authors, “How these combined effects can be mitigated remains a major challenge.”

Additional co-authors not mentioned above include Lorenzo Rosa, who is affiliated with the Department of Earth System Science in the Stanford Doerr School of Sustainability and the Department of Global Ecology at the Carnegie Institution for Science. The research was supported by a Dean’s Postdoctoral Fellowship awarded to Li by the Stanford Doerr School of Sustainability.

CLICK HERE FOR MORE INFORMATION

https://www.sciencedaily.com/releases/2025/11/251115095918.htm

Floating device turns raindrops into electricity

A lightweight, floating system turns raindrops into renewable power using water itself as the key component.

ource:Science China PressSummary:A new floating droplet electricity generator is redefining how rain can be harvested as a clean power source by using water itself as both structural support and an electrode. This nature-integrated design dramatically reduces weight and cost compared to traditional solid-based generators while still producing high-voltage outputs from each falling drop. It remains stable in harsh natural conditions, scales to large functional devices, and has the potential to power sensors, off-grid electronics, and distributed energy systems on lakes and coastal waters.Share:

    

FULL STORY


Floating Device Turns Raindrops Into Electricity
A water-integrated generator can float on lakes or reservoirs and convert raindrop impacts into strong electrical pulses with minimal materials. Credit: Shutterstock

Raindrops are more than a source of fresh water. They also carry mechanical energy that reaches the ground for free, and scientists have been exploring how to turn that energy into electricity for years. Traditional droplet electricity generators, however, often struggle with low efficiency, heavy components, and limited potential for scaling up. A research team from Nanjing University of Aeronautics and Astronautics has now developed a new solution: a floating droplet electricity generator that uses natural water as part of its structure. The result is a lighter, more affordable, and more sustainable way to collect clean energy. The work is described in National Science Review.

Most droplet electricity generators use a solid platform and a metal bottom electrode. When a raindrop hits the dielectric film on top, the impact produces an electrical signal. Although this approach can generate hundreds of volts, it relies on rigid, costly materials that limit widespread deployment. The new design takes a different approach by allowing the device to float on a water surface. In this setup, the water itself acts as the supporting base and also serves as the conductive electrode. This nature-integrated configuration cuts the device’s weight by about 80 percent and lowers cost by about 50 percent while maintaining similar electrical output compared to conventional systems.

How Water Improves Energy Generation

When a raindrop lands on the floating dielectric film, the water beneath it provides the strength needed to absorb the impact because of its incompressibility and surface tension. This lets the droplet spread more effectively across the surface. At the same time, ions in the water act as charge carriers, allowing the water layer to operate as a dependable electrode. These combined effects enable the floating generator to deliver high peak voltages of around 250 volts per droplet, a performance level comparable to devices that rely on metal components and solid substrates.

Durability is a major advantage of the new system. Tests showed that the W-DEG continued to function under a wide range of temperatures and salt levels, and even when exposed to natural lake water containing biofouling. Many energy-harvesting devices degrade in such environments, but this generator remained stable because its dielectric layer is chemically inert and its water-based structure is naturally resilient. To improve reliability further, the team used water’s strong surface tension to design drainage holes that let water move downward but not upward. This creates a self-regulating way to remove excess droplets and helps prevent water buildup that could interfere with performance.

Scalable Design for Large-Area Energy Collection

Scalability is a promising aspect of this technology. The researchers created an integrated device measuring 0.3 square meters, which is much larger than most previous droplet generators, and demonstrated that it could power 50 light-emitting diodes (LEDs) at the same time. The system also charged capacitors to useful voltages within minutes, showing its potential for powering small electronics and wireless sensors. With continued development, similar systems could be deployed on lakes, reservoirs, or coastal waters, providing renewable electricity without using any land-based space.

“By letting water itself play both structural and electrical roles, we’ve unlocked a new strategy for droplet electricity generation that is lightweight, cost-effective, and scalable,” said Prof. Wanlin Guo, a corresponding author of the study. “This opens the door to land-free hydrovoltaic systems that can complement other renewable technologies like solar and wind.”

Broader Applications and Future Possibilities

The impact of this research goes beyond capturing energy from rainfall. Because the generator floats naturally on water, it could support environmental monitoring systems in diverse aquatic settings, including sensors for water quality, salinity, or pollution. In areas with frequent rain, the technology could offer a distributed source of clean power for local grids or act as a resource for off-grid needs. The “nature-integrated design” approach, which uses abundant natural materials like water as essential working components, may also inspire future advances in sustainable technology.

Although the laboratory results are encouraging, the researchers emphasize that additional work is necessary before the technology can be deployed at large scales. Real raindrops vary in both size and speed, and these differences could influence power generation. Maintaining the durability of large dielectric films in dynamic outdoor conditions will also require further engineering. Even so, the successful demonstration of a stable, efficient, and scalable prototype represents an important step toward practical applications.

CLICK HERE FOR MORE INFORMATION

https://www.sciencedaily.com/releases/2025/11/251114041228.htm

Massive hidden waves are rapidly melting Greenland’s glaciers

Calving icebergs unleash hidden wave forces that supercharge Greenland’s melt and push the ice sheet closer to collapse.

Source:University of ZurichSummary:Researchers in Greenland used a 10-kilometer fiber-optic cable to track how iceberg calving stirs up warm seawater. The resulting surface tsunamis and massive hidden underwater waves intensify melting at the glacier face. This powerful mixing effect accelerates ice loss far more than previously understood. The work highlights how fragile the Greenland ice system has become as temperatures rise.Share:

    

FULL STORY


Hidden Waves Speed Up Greenland’s Melting
View of the fjord and the three-kilometer-wide calving front of Eqalorutsit Kangilliit Sermiat in southern Greenland. The fiber-optic cable was laid a few hundred meters from the ice wall through the 300-meter-deep water on the seabed. In the foreground is the UZH radar device, which measures calving events and ice movements in order to interpret the data from the fiber-optic cable. Credit: Andreas Vieli, University of Zurich

Iceberg calving happens when large pieces of ice split from the front of a glacier and fall into the ocean. This natural event is a major contributor to the rapid reduction of ice on the Greenland ice sheet. For the first time, an international team led by the University of Zurich (UZH) and the University of Washington (UW) has used fiber-optic technology to track how the impact of falling ice, along with the movement of the released ice, causes glacial meltwater to mix with warmer seawater below the surface.

“The warmer water increases seawater-induced melt erosion and eats away at the base of the vertical wall of ice at the glacier’s edge. This, in turn, amplifies glacier calving and the associated mass loss from ice sheets,” explains Andreas Vieli, a professor in UZH’s Department of Geography and co-author of the research. Vieli leads the Cryosphere cluster, one of six groups in the international GreenFjord project in southern Greenland, supported by the Swiss Polar Institute. The team’s discovery about how ice and seawater interact was highlighted on the cover of Nature.

Wave measurements using fiber-optic cable on seafloor

During the GreenFjord project, researchers from UZH, UW and several Swiss partners carried out an extensive field campaign to study calving behavior. They placed a ten-kilometer-long fiber-optic cable on the seafloor across the fjord in front of the Eqalorutsit Kangilliit Sermiat glacier. This fast-moving glacier in southern Greenland releases about 3.6 km3 of ice into the ocean each year, which is almost three times the annual volume of the Rhône glacier near the Furka mountain pass in Switzerland.

The research team relied on Distributed Acoustic Sensing (DAS), a method that detects tiny vibrations along the cable caused by events such as newly formed crevasses, falling ice blocks, ocean waves or temperature changes. “This enables us to measure the many different types of waves that are generated after icebergs break off,” says lead author Dominik Gräff, a UW postdoctoral researcher affiliated with ETH Zurich.

Underwater waves amplify glacier melt and erosion

After an iceberg crashes into the water, surface waves called calving-induced tsunamis sweep across the fjord and mix the upper water layers. Because seawater in Greenland’s fjords is warmer and denser than meltwater, it sinks toward the deeper layers.

The team also detected another type of wave that continues to move between density layers long after the surface becomes calm. These internal underwater waves, which can reach heights comparable to skyscrapers, cannot be seen from above but keep mixing the water for extended periods. This ongoing movement brings warm water upward, increasing melting and erosion at the glacier’s edge and promoting further calving. “The fiber-optic cable allowed us to measure this incredible calving multiplier effect, which wasn’t possible before,” says Gräff. The data gathered will support future efforts to document calving events and better understand the rapid decline of ice sheets.

A fragile and threatened system

Scientists have long known that interactions between seawater and calving play an important role in glacier retreat, but collecting detailed measurements in the field has been extremely difficult. Fjords filled with icebergs present constant hazards from falling ice, and satellite observations cannot capture what happens below the surface where these interactions occur. “Our previous measurements have often merely scratched the surface, so a new approach was needed,” says Andreas Vieli.

The Greenland ice sheet covers an area around 40 times larger than Switzerland. If it were to melt completely, global sea levels would rise by about seven meters. The large volumes of meltwater flowing from shrinking glaciers can also disrupt major ocean currents such as the Gulf Stream, with significant consequences for Europe’s climate. The retreat of calving glaciers further affects the ecosystems within Greenland’s fjords. “Our entire Earth system depends, at least in part, on these ice sheets. It’s a fragile system that could collapse if temperatures rise too high,” warns Dominik Gräff.

CLICK HERE FOR MORE INFORMATION

https://www.sciencedaily.com/releases/2025/11/251113071623.htm

Earth is slowly peeling its continents from below, fueling ocean volcanoes

New research challenges long-held ideas about how volcanic islands form and how Earth’s interior stays dynamic.

Source:University of Southampton

Summary:Researchers discovered that continents don’t just split at the surface—they also peel from below, feeding volcanic activity in the oceans. Simulations reveal that slow mantle waves strip continental roots and push them deep into the oceanic mantle. Data from the Indian Ocean confirms this hidden recycling process, which can last tens of millions of years.Share:

    

FULL STORY


Hidden Forces Fuel Ocean Volcanoes
Continents slowly peel away from below, sending slivers deep into the oceanic mantle that fuel volcanic activity far from tectonic edges. This newfound process, traced through the Indian Ocean, reshapes how scientists understand Earth’s hidden geological engine. Credit: Shutterstock

Earth scientists have uncovered a slow and surprising process beneath our planet’s surface that helps fuel volcanic activity in the oceans.

Researchers from the University of Southampton found that fragments of continents are gradually stripped away from below and drawn into the oceanic mantle — the hot, mostly solid layer beneath the sea floor that slowly circulates. Once there, this continental material can power volcanic eruptions for tens of millions of years.

This discovery resolves a long-standing geological puzzle: why certain ocean islands located far from tectonic plate boundaries contain chemical signatures that look distinctly continental, even though they lie in the middle of vast oceans.

The study, published in Nature Geoscience, was conducted by an international team from the University of Southampton, GFZ Helmholtz Centre for Geosciences in Potsdam, the University of Potsdam, Queen’s University (Canada), and Swansea University.

Ancient chemical clues deep within the mantle

Ocean islands such as Christmas Island in the northeast Indian Ocean often contain unusually high concentrations of certain “enriched” elements that typically come from continents. Scientists have compared this mixing process to the motion of a cake mixer folding in older, recycled ingredients from deep within the Earth.

For years, geologists assumed these enriched elements came from ocean sediments pulled into the mantle when tectonic plates sink, or from columns of rising hot rock known as mantle plumes.

However, those explanations have limits. Some volcanic regions lack evidence of recycled crust, while others seem too shallow and cool to be driven by deep mantle plumes.

“We’ve known for decades that parts of the mantle beneath the oceans look strangely contaminated, as if pieces of ancient continents somehow ended up in there,” said Thomas Gernon, Professor of Earth Science at the University of Southampton and the study’s lead author. “But we haven’t been able to adequately explain how all that continental material got there.”

Continents are peeling from below

The researchers propose a new mechanism: continents not only split apart at the surface but also peel away from below, and across far greater distances than scientists once believed possible.

To test this, the team built computer simulations that recreated how the mantle and continental crust behave when stretched by tectonic forces.

Their results show that when continents begin to break apart, powerful stresses deep within the Earth trigger a slow-moving “mantle wave.” This rolling motion travels along the base of the continents at depths of 150 to 200 kilometers, disturbing and gradually stripping material from their deep roots.

The process happens at an incredibly slow rate — roughly a millionth the speed of a snail. Over time, these detached fragments are carried sideways for more than 1,000 kilometers into the oceanic mantle, where they feed volcanic activity for tens of millions of years.

Study co-author Professor Sascha Brune of GFZ in Potsdam explained, “We found that the mantle is still feeling the effects of continental breakup long after the continents themselves have separated. The system doesn’t switch off when a new ocean basin forms — the mantle keeps moving, reorganizing, and transporting enriched material far from where it originated.”

Clues from the Indian Ocean

To support their model, the team analyzed chemical and geological data from regions such as the Indian Ocean Seamount Province — a chain of volcanic formations that appeared after the breakup of the supercontinent Gondwana over 100 million years ago.

Their findings show that soon after Gondwana split apart, a pulse of magma unusually rich in continental material erupted to the surface. Over time, this chemical signature gradually faded as the flow of material from beneath the continents diminished. Notably, this happened without the presence of a deep mantle plume, challenging long-held assumptions about the source of such volcanism.

Professor Gernon added: “We’re not ruling out mantle plumes, but this discovery points to a completely new mechanism that also shapes the composition of the Earth’s mantle. Mantle waves can carry blobs of continental material far into the oceanic mantle, leaving behind a chemical signature that endures long after the continents have broken apart.”

The research also builds on the team’s earlier work showing that these slow, rolling mantle waves can have dramatic effects deep inside continents. Their previous studies suggest that such waves may help trigger diamond eruptions and even reshape landscapes thousands of kilometers away from tectonic boundaries.

CLICK HERE FOR MORE INFORMATION

https://www.sciencedaily.com/releases/2025/11/251112011806.htm

Microbes that breathe rust could help save Earth’s oceans

Microbes that breathe iron and eat sulfide could be quietly saving Earth’s oceans.

Source:University of Vienna

Summary:Researchers from the University of Vienna discovered MISO bacteria that use iron minerals to oxidize toxic sulfide, creating energy and producing sulfate. This biological process reshapes how scientists understand global sulfur and iron cycles. By outpacing chemical reactions, these microbes could help stop the spread of oceanic dead zones and maintain ecological balance.Share:

    

FULL STORY


Microbes That Breathe Rust
MISO bacteria “breathe” iron minerals while detoxifying sulfide, driving a newly discovered biological process that connects global sulfur, iron, and carbon cycles. Credit: Shutterstock

An international research team led by microbiologists Marc Mussmann and Alexander Loy at the University of Vienna has uncovered a completely new type of microbial metabolism. The newly identified microorganisms, known as MISO bacteria, are able to “breathe” iron minerals by oxidizing toxic sulfide. The scientists discovered that the reaction between hydrogen sulfide — a poisonous gas — and solid iron minerals is not only a chemical process, but also a biological one. In this newly revealed pathway, adaptable microbes living in marine sediments and wetland soils remove toxic sulfide and use it as an energy source for growth. These bacteria may also play an important role in preventing the expansion of oxygen-depleted “dead zones” in aquatic ecosystems.

The findings were recently published in Nature.

How Microbes Power Earth’s Element Cycles

The movement of key elements such as carbon, nitrogen, sulfur, and iron through the environment occurs through what are known as biogeochemical cycles. These transformations take place through reduction and oxidation (redox) reactions that move elements between air, water, soil, rocks, and living things. Because these cycles regulate greenhouse gases, they have a direct influence on Earth’s climate and temperature balance. Microorganisms drive nearly every step of these processes, using substances like sulfur and iron for respiration in much the same way humans rely on oxygen to metabolize food.

Sulfur and iron are particularly essential for microbial communities that live in oxygen-deprived habitats such as ocean floors, wetlands, and sediments. Sulfur can exist as a gas in the atmosphere, as sulfate dissolved in seawater, or locked within mineral deposits. Iron, on the other hand, shifts between different chemical forms depending on the availability of oxygen. When microbes process sulfur, they frequently change the form of iron at the same time, creating a tightly linked relationship between the two elements. This coupling affects nutrient cycling and influences the production or consumption of greenhouse gases like carbon dioxide and methane. Understanding these connections helps scientists predict how natural systems respond to environmental changes, including pollution and global warming.

Microbes That Use Iron to Eliminate Toxic Sulfide

“We show that this environmentally important redox reaction is not solely chemical,” says Alexander Loy, research group leader at CeMESS, the Centre for Microbiology and Environmental Systems Science at the University of Vienna. “Microorganisms can also harness it for growth.”

The team’s discovery reveals a new form of microbial energy production called MISO. This process connects the reduction of iron(III) oxide with the oxidation of sulfide. Unlike a purely chemical reaction, MISO directly generates sulfate, skipping intermediate steps in the sulfur cycle. “MISO bacteria remove toxic sulfide and may help prevent the expansion of so-called ‘dead zones’ in aquatic environments, while fixing carbon dioxide for growth — similar to plants,” adds Marc Mussmann, senior scientist at CeMESS.

A Fast, Widespread Process That Shapes the Planet

In laboratory experiments, the researchers found that the MISO reaction carried out by microbes happens faster than the same reaction when it occurs chemically. This indicates that microorganisms are likely the main force behind this transformation in natural environments. “Diverse bacteria and archaea possess the genetic capacity for MISO,” explains lead author Song-Can Chen, “and they are found in a wide range of natural and human-made environments.”

According to the study, MISO activity in marine sediments could be responsible for as much as 7% of all global sulfide oxidation to sulfate. This process is fueled by the steady flow of reactive iron entering the oceans from rivers and melting glaciers. The research, supported by the Austrian Science Fund (FWF) as part of the ‘Microbiomes Drive Planetary Health’ Cluster of Excellence, identifies a new biological mechanism linking the cycling of sulfur, iron, and carbon in oxygen-free environments.

“This discovery demonstrates the metabolic ingenuity of microorganisms and highlights their indispensable role in shaping Earth’s global element cycles,” concludes Alexander Loy.

CLICK HERE FOR MORE INFORMATION

https://www.sciencedaily.com/releases/2025/11/251109013252.htm

Deep-sea mining starves life in the ocean’s twilight zone

New research reveals that deep-sea mining waste could disrupt one of Earth’s most vital but least understood ecosystems.

Source:University of Hawaii at Manoa

Summary:Scientists have discovered that deep-sea mining plumes can strip vital nutrition from the ocean’s twilight zone, replacing natural food with nutrient-poor sediment. The resulting “junk food” effect could starve life across entire marine ecosystems.Share:

    

FULL STORY


Deep-Sea Mining Starves Life in the Ocean
Nodules on the abyssal seafloor in the Clarion Clipperton Zone with a mud cloud from a scientific remotely-operated vehicle (ROV) touching down. Credit: UH/NOAA DeepCCZ Expedition

A new study from the University of Hawai’i (UH) at Mānoa, published on November 6 in Nature Communications, provides the first direct evidence that waste from deep-sea mining could disrupt vital ecosystems in the Pacific Ocean’s Clarion-Clipperton Zone (CCZ). This area, one of the most biologically rich regions of the deep sea, is now the focus of growing industrial interest. Researchers found that sediment discharged during mining operations could harm marine life in the midwater “twilight zone,” a key habitat between 200 and 1,500 meters below the surface that supports vast populations of tiny drifting animals called zooplankton — the foundation of the ocean’s food web.

The team determined that 53% of zooplankton and 60% of micronekton, which feed on zooplankton, would be affected by mining waste discharge. Such disturbances could ripple through the food chain, ultimately impacting larger predators such as fish, seabirds, and marine mammals.

Murky Plumes and “Junk Food” Sediment

“When the waste released by mining activity enters the ocean, it creates water as murky as the mud-filled Mississippi River. The pervasive particles dilute the nutritious, natural food particles usually consumed by tiny, drifting Zooplankton,” said Michael Dowd, lead author of the study and a graduate student in Oceanography at the UH Mānoa School of Ocean and Earth Science and Technology (SOEST).

“Micronekton, small shrimp, fish and other animals that swim, feed on zooplankton. Some migrate between the depths and near surface waters and they are consumed by fish, seabirds and marine mammals. Zooplankton’s exposure to junk food sediment has the potential to disrupt the entire food web.”

Measuring the Nutritional Impact of Deep-Sea Mining

The research, titled “Deep-sea mining discharge can disrupt midwater food webs,” examined the effects of sediment plumes released during a 2022 mining test in the CCZ. This vast region is targeted for the extraction of polymetallic nodules that contain valuable minerals such as cobalt, nickel, and copper — key components for electric vehicles and renewable technologies.

By collecting and analyzing water samples from the depths where waste was discharged, the scientists found that mining particles contained far fewer amino acids, an important measure of nutritional quality, than the natural particles that typically nourish marine organisms.

“This isn’t just about mining the seafloor; it’s about reducing the food for entire communities in the deep sea,” said co-author Erica Goetze, a SOEST oceanography professor and marine zooplankton specialist. “We found that many animals at the depth of discharge depend on naturally occurring small detrital particles — the very food that mining plume particles replace.”

At present, around 1.5 million square kilometers of the CCZ are licensed for deep-sea mining exploration, reflecting the surge in global demand for minerals used in low-carbon technologies.

Disrupting an Ecosystem Built on Scarcity

During the mining process, nodules are collected from the seafloor along with surrounding sediments and seawater, then pumped to a surface vessel where nodules are separated from the waste material. The leftover sediment and fine nodule fragments are then released back into the ocean. Some companies have proposed releasing this waste within the twilight zone, but the environmental consequences of such practices have remained largely unknown — until now.

These findings underscore a major regulatory gap, as no international rules currently govern where or how mining waste can be discharged.

The twilight zone teems with life, including krill, squid, fish, octopus, and delicate jelly-like species. Many of these organisms travel upward toward the surface each night to feed and then descend again by day, transporting carbon to the deep ocean in the process. This vertical migration helps maintain the planet’s carbon balance and supports the health of marine ecosystems worldwide.

“Our research suggests that mining plumes don’t just create cloudy water — they change the quality of what’s available to eat, especially for animals that can’t easily swim away,” said co-author Jeffrey Drazen, a deep-sea ecologist and SOEST professor of oceanography. “It’s like dumping empty calories into a system that’s been running on a finely tuned diet for hundreds of years.”

Global Implications for Marine Food Webs

The study raises concerns that large-scale mining could trigger widespread and long-lasting changes in ocean ecosystems if it proceeds without strict safeguards. Even commercial fisheries could be affected; for instance, tuna populations migrate through the CCZ, meaning the impacts of mining could extend to seafood consumed around the world.

“Deep-sea mining has not yet begun at a commercial scale, so this is our chance to make informed decisions,” said co-author Brian Popp, SOEST professor of Earth sciences and an expert in marine stable isotope biogeochemistry. “If we don’t understand what’s at stake in the midwater, we risk harming ecosystems we’re only just beginning to study.”

A Call for Responsible Regulation

The authors hope their results will guide policy discussions currently underway at the International Seabed Authority and inform environmental reviews conducted by the National Oceanic and Atmospheric Administration. They stress the importance of developing international rules to protect marine ecosystems from surface waters to the deep sea.

“Before commercial deep-sea mining begins, it is essential to carefully consider the depth at which mining waste is discharged,” added Drazen. “The fate of these mining waste plumes and their impact on ocean ecosystems varies with depth, and improper discharge could cause harm to communities from the surface to the seafloor.”

Additional contributors to the study include UH Mānoa oceanography graduate students Victoria Assad and Alexus Cazares-Nuesser, and oceanography professor Angelicque White.

CLICK HERE FOR MORE INFORMATION

https://www.sciencedaily.com/releases/2025/11/251108012850.htm

Laser satellites expose a secret Antarctic carbon burst

Source:Chinese Academy of Sciences Headquarters

Summary:A new study shows that the Southern Ocean releases far more carbon dioxide in winter than once thought. By combining laser satellite data with AI analysis, scientists managed to “see” through the polar darkness for the first time. The results reveal a 40% undercount in winter emissions, changing how researchers view the ocean’s carbon balance and its impact on climate models.Share:

    

FULL STORY


Satellites Expose Secret Antarctic Carbon Burst
Researchers have found that the Southern Ocean emits about 40% more carbon dioxide during the Antarctic winter than previous estimates suggested. Using laser-based satellite technology, they uncovered a hidden seasonal flux that redefines the ocean’s role in the global carbon cycle. Credit: Shutterstock

A team of scientists has found that the Southern Ocean emits far more carbon dioxide (CO2) during the lightless Antarctic winter than researchers once believed. According to their new study, this wintertime release of CO2 has been underestimated by as much as 40%.

The research was led by scientists from the Second Institute of Oceanography, Ministry of Natural Resources (SIO-MNR), and the Nanjing Institute of Geography and Limnology (NIGLAS) of the Chinese Academy of Sciences. Their results were published in Science Advances on Nov. 5.

The Ocean’s Role in Earth’s Carbon Balance

The Southern Ocean is a major regulator of the global carbon cycle, absorbing a large share of the carbon released by human activity. Yet despite its importance, it remains the “largest source of uncertainty” in global CO2 flux calculations.

That uncertainty comes from a lack of winter observations. For months each year, the Southern Ocean lies in complete darkness and is lashed by extreme weather, making direct measurement nearly impossible. During this time, the region becomes an “observational black box.” Traditional satellites, which depend on reflected sunlight (passive sensors) to detect ocean properties, cannot collect data under these conditions, leaving scientists reliant on incomplete or estimated models.

Using Lasers to See in the Dark

To overcome this limitation, the researchers used an advanced approach that combined 14 years of data from a laser-based satellite instrument called LIDAR (on the CALIPSO mission) with machine learning analysis.

LIDAR, unlike passive sensors, sends out its own light signals, working similarly to radar but with lasers instead of radio waves. This technology allowed the team to observe the ocean even during the polar night and create the first continuous, observation-based record of winter CO2 exchange in the Southern Ocean.

The results revealed that earlier estimates had missed nearly 40% of the Southern Ocean’s wintertime CO2output. “Our findings suggest that the Southern Ocean’s role in the global carbon cycle is more complex and dynamic than previously known,” said Prof. Kun Shi of NIGLAS.

Rethinking the Ocean’s Carbon Dynamics

Beyond updating the numbers, the study redefines how scientists understand carbon movement in the Southern Ocean. The team introduced a new “three-loop framework” to explain how CO2 exchange varies across different regions.

In the Antarctic Loop (south of 60°S), physical factors such as sea ice and salinity are the main drivers of CO2exchange. In the Polar Front Loop (45°S-60°S), the interaction between atmospheric CO2 and biological activity (chlorophyll) becomes more influential. Meanwhile, in the Subpolar Loop (north of 45°S), sea surface temperature plays the dominant role.

Global Climate Implications

Filling this long-standing data gap could lead to more accurate global carbon budgets, which form the foundation of climate projections used by organizations such as the Intergovernmental Panel on Climate Change (IPCC).

CLICK HERE FOR MORE INFORMATION

https://www.sciencedaily.com/releases/2025/11/251108014024.htm